New PMMA-based composites for preparing spacer devices in prosthetic infections
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ong KL, Kurtz S, Lau E, Bozic KJ, Berry DJ, Parvizi J. Prosthetic joint infection risk after total hip arthroplasty in the Medicare Population. J Arthroplasty. 2009;24:105–9.
Kurtz S, Ong KL, Lau E, Bozic KJ, Berry D, Parvizi J. Prosthetic joint infection risk after TKA in the Medicare population. Clin Orthop Relat Res. 2010;468:52–6.
Winkler H. Rationale for one stage exchange of infected hip replacement using uncemented implants and antibiotic impregnated bone graft. Int J Med Sci. 2009;6:247–52.
Nijhof MW, Fleer A, Hardus K, Vogely HC, Schouls LM, Verbout AJ, Dhert WJ. Tobramycin-containing bone cement and systemic cefazolin in a one-stage revision. Treatment of infection in a rabbit model. J Biomed Mater Res. 2001;58:747–53.
Hofmann AA, Goldberg TD, Tanner AM, Cook TM. Ten-year experience using an articulating antibiotic cement hip spacer for the treatment of chronically infected total hip. J Arthroplasty. 2005;20:874–9.
Henry SL, Hood GA, Seligson D. Long-term implantation of gentamicin-polymethylmethacrylate antibiotic beads. Clin Orthop Relat Res. 1993;295:47–53.
An YH, Friedman RJ. Animal models of orthopaedic prosthetic infection. In: An YH, Friedman RJ, editors. Animal models in orthopaedic research. Boca Raton: CRC Press-Taylor & Francis; 1998. p. 443–56.
Faber C, Stallmann HP, Lyaruu DM, Joosten U, von Eiff C, van Nieuw Amerongen A, Wuisman PI. Comparable efficacies of the antimicrobial peptide human lactoferrin 1–11 and gentamicin in a chronic methicillin-resistant Staphylococcus aureus osteomyelitis model. Antimicrob Agents Chemother. 2005;49:2438–44.
Joosten U, Joist A, Gosheger G, Liljengvist U, Brandt B, von Eiff C. Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials. 2005;26:5251–8.
Henry S, Galloway KP. Local antibacterial therapy for the management of orthopaedic infections. Pharmacokinetic considerations. Clin Pharmacokinet. 1995;29:36–45.
Jaeblon T. Polymethylmethacrylate: properties and contemporary uses in orthopaedics. J Am Acad Orthop Surg. 2010;18:297–305.
Bertazzoni Minelli E, Benini A. PMMA as drug delivery system and in vivo release from spacers. In: Romano C, Crosby L, Hofmann G, Meani E, editors. Infection and local treatment in orthopedic surgery. New York: Springer; 2007. p. 79–91.
van de Belt H, Neut D, Uges DRA, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Surface roughness, porosity and wettability of gentamicin-loaded bone cements and their antibiotic release. Biomaterials. 2000;21:1981–7.
Giavaresi G, Tschon M, Borsari V, Daly JH, Liggat JJ, Fini M, Bonazzi V, Nicolini A, Carpi A, Morra M, Cassinelli C, Giardino R. New polymer for drug delivery system in orthopaedics: in vivo biocompatibility evaluation. Biomed Pharmacother. 2004;58:411–7.
Giavaresi G, Borsari V, Fini M, Giardino R, Sambri V, Gaubani P, Soffiatti R. Preliminary investigation on a new gentamicin and vancomycin-coated PMMA nail for the treatment of bone and intramedullary infections: an experimental study in rabbit. J Orthop Res. 2008;26:785–92.
Bertazzoni Minelli E, Caveiari C, Benini A. Release of antibiotics from polymethylmethacrylate cement. J Chemother. 2002;14:492–500.
Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 8th edn, M07-A8. Wayne, PA: CLSI; 2009.
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Nineteenth informational supplement, M100-S19. Wayne, PA: CLSI; (2009).
Guide for the Care and Use of Laboratory Animals. National Academic Press, Constitution Avenue, NW Washington DC; 2010.
Gillaspy AF, Hickmon SG, Skinner RA, Thomas JR, Nelson CL, Smeltzer MS. Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun. 1995;63:3373–80.
Bertazzoni Minelli E, Benini A, Magnan B, Bartolozzi P. Release of gentamicin and vancomycin from temporary human hip spacers in two-stage revision of infected arthroplasty. J Antimicrob Chemother. 2004;53:329–34.
Miclau T, Edin ML, Lester GE, Lindsey RW, Dahners LE. Bone toxicity of locally applied aminoglycosides. J Orthop Trauma. 1995;9(5):401–6.
Anagnostakos K, Wilmes P, Schmitt E, Kelm J. Elution of gentamicin and vancomycin from polymetheylmetacrrylate beads and hip spacers in vivo. Acta Orthop. 2009;80:193–7.
Gladius L. Properties of antibiotic-loaded acrylic bone cements for use in cemented arthroplasties: a state of the art review. J Biomed Mater Res B Appl Biomater. 2009;89:558–74.
Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release. 2008;130:202–15.
Edin ML, Miclau T, Lester GE, Lindsey RW, Dahners LE. Effect of cefazolin and vancomycin on osteoblasts in vitro. Clin Orthop Relat Res. 1996;333:245–51.
Silverman LD, Lukashova L, Herman OT, Lane JM, Boskey AL. Release of gentamicin from a tricalcium phosphate bone implant. J Orthop Res. 2007;25:23–9.
Ni S, Chang J, Chou L, Zhai W. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. J Biomed Mater Res Part B Appl Biomater. 2007;80:174–83.
Arinzeh LT, Tran T, Mcalary J, Daculsi G. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell induced bone formation. Biomaterials. 2005;26:3631–8.
van de Belt H, Neut D, Schenk W, van Horn JR, van der Mei HC, Busscher HJ. Infection of orthopedic implants and the use of antibiotic-loaded bone cements. Acta Orthop Scand. 2001;72:557–71.
Lohmann CH, Sagun R Jr, Sylvia VL, Cochran DL, Dean DD, Boyan BD, Schwartz Z. Surface roughness modulates the response of MG63 osteoblast-like cells to 1,25-(OH)(2)D(3) through regulation of phospholipase A(2) activity and activation of protein kinase A. J Biomed Mater Res. 1999;47:139–51.
Schwartz Z, Lohmann CH, Vocke AK, Sylvia VL, Cochran DL, Dean DD, Boyan BD. Osteoblast response to titanium surface roughness and alpha,25-(OH)(2)D(3) is mediated through the mitogen-activated protein kinase (MAPK) pathway. J Biomed Mater Res. 2001;56:417–26.
Fini M, Giavaresi G, Nicoli Aldini N, Torricelli P, Botter R, Beruto D, Giardino R. A bone composed of polymethylmethacrylate and α-tricalcium phosphate: results in term of osteoblast function and bone tissue formation. Biomaterials. 2002;23:4523–31.
Wang JS, Diaz J, Sabokbar A, Athanasou N, Kjellson F, Tanner KE, McCarthy ID, Lidgren L. In vitro and in vivo biological response to a novel radiopacifying agent for bone cement. J R Soc Interface. 2005;2:71–8.
Wimhurst J, Brooks R, Rushton N. The effect of particulate bone cement at the bone-implant interface. J Bone Joint Surg. 2001;83:588–92.
Cui Q, Mihalko WM, Shields JS, Ries M, Saleh KJ. Antibiotic-impregnated cement spacers for the treatment of infection associated with total hip or knee arthroplasty. J Bone Joint Surg Am. 2007;89:871–82.
Tigani D, Zolezzi C, Trentani F, Ragaini A, Iafisco M, Manara S, Palazzo B, Roveri N. Controlled release of vancomycin from cross-linked gelatine. J Mater Sci Mater Med. 2008;19:1325–34.
Deb S. Acrylic bone cements for joint replacement. In: Ambrosio L, editor. Biomedical composites. New York/Boca Raton: Woodhead Publishing Limited/CRC Press; 2010. p. 210–29.