New Nanosized Luminophores Obtained via Evaporation of REE Silicates and Germanates

Pleiades Publishing Ltd - Tập 61 - Trang 925-934 - 2019
M. G. Zuev1, V. G. Il’ves2, S. Yu. Sokovnin2, A. A. Vasin1, I. V. Baklanova1
1Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia

Tóm tắt

Nanophosphors in the amorphous state are first obtained via pulsed electron beam evaporation of targets made of polycrystalline phosphors with the compositions Ca2M8(SiO4)6O2:Eu (M = Y and Gd) and Ca2La8(GeO4)6O2:Eu with the structure of oxyapatite. Reduction of ions Eu3+ → Eu2+ in the electron beam is found. Modification of the Raman scattering (RS) spectra of the samples in the case of a decrease in the size of the particles from bulk to a nanosized state is found. The change in the forbidden band width Eg of the samples in the case of transition from a bulk powder to an NP is considered. The spectral and luminescence characteristics of the samples in the polycrystalline and nanoamorphous states are studied. It is shown that, in the case of transition to nanosamples, the ligand field around Eu2+ changes. This may be due to the violation of the translational symmetry in the NP. The bond between the 4f and 5d electrons weakens. Degeneracy of the 2eg level appears. Presumably, the reduction of ions Eu3+ → Eu2+ in the electron beam due to the breaking of the Si(Ge)–O bond in the process of evaporation of the samples and capture of the released electron by the Eu3+ ions is found.

Tài liệu tham khảo

S. Y. Raghvendra, K. D. Ranu, M. Kumar, and A. C. Pande, J. Lumin. 129, 1078 (2009). R. N. Bhargava, V. Chhabra, B. Kulkarni, and J. V. Veliadis, Phys. Status Solidi B 210, 621 (1998). M. G. Zuev, S. Yu. Sokovnin, V. G. Il’ves, I. V. Baklanova, and A. A. Vasin, J. Solid State Chem. 218, 164 (2014). C. Li, A. Lagriffoul, R. Moncorge, J. C. Souriau, C. Borel, and Ch. Wyon, J. Lumin. 62, 157 (1994). M. D. Chambers, P. A. Rousseve, and D. R. Clarke, J. Lumin. 129, 263 (2009). N. Xiumei, L. Jun, L. Zhe, Q. Xiwei, L. Mingua, and W. Xiaoqiang, J. Rare Earths 26, 904 (2008). G. S. Rama Raju, H. C. Jung, J. Y. Park, B. K. Moon, R. Balakrishnaiah, J. H. Jeong, and J. H. Kim, Sens. Actuators, B 146, 395 (2010). M. Que, Zh. Ci, Y. Wang, G. Zhu, Y. Shi, and Sh. Xin, J. Lumin. 144, 64 (2013). S. Qi, Y. Huang, T. Tsuboi, W. Huang, and H. J. Seo, Opt. Mater. Express 4, 396 (2014). J. K. Han, M. E. Hannah, A. Piquette, J. Micone, G. A. Hirata, J. B. Talbot, K. C. Mishra, and J. Mc-Kittrick, J. Lumin. 133, 184 (2013). B. Chu, C. Guo, and Q. Su, Mater. Chem. Phys. 84, 279 (2004). C. Peng, G. Li, Z. Hou, M. Shang, and J. Lin, Mater. Chem. Phys. 136, 1008 (2012). K.-Y. Yeh, C.-C. Yang, W.-R. Liu, and M. G. Brik, Opt. Mater. Express 6, 418 (2016). Y.-Ch. Li, Y.-H. Chang, B.-S. Tsai, Y.-Ch. Chen, and Y.-F. Lin, J. Alloys Compd. 416, 199 (2006). S. Yu. Sokovnin, V. G. Il’ves, and M. G. Zuev, in Engineering of Nanobiomaterials Applications of Nanobiomaterials, Ed. by A. Grumezescu (Elsevier, Amsterdam, 2016), Vol. 2, Chap. 2. S. Thomas, Ph.D. Thesis (Nat. Inst. Interdiscipl. Sci. Technol., Thiruvananthapuram, 2010). S. Brunauer, Adsorption of Gases and Vapours (Oxford Univ., London, 1945), Vol. 1. G. J. McCarthy and D. K. Smith, Powder Diffraction File ICDD PDF-4 PDF2007 Card 00-029-0320 (Penn State Univ., University Park, PN, 1976). Landolt-Börnstein, Group III Condensed Matter, Ed. by K.-H. Hellwege and A. M. Hellwege (Springer, Berlin, Heidelberg, 1974), Vol. 7G. L.-M. Peng, S. L. Dudarev, and M. J. Whelan, High Energy Electron Diffraction and Microscopy (Oxford Univ. Press, Oxford, 2004). Yu. K. Voron’ko, A. A. Sobol’, V. E. Shukshin, A. I. Zagumennyi, Yu. D. Zavartsev, and S. A. Kutovoi, Phys. Solid State 54, 1635 (2012). A. N. Lazarev, A. P. Mirgorodskii, and I. S. Ignat’ev, Vibrational Spectra of Complex Oxides (Nauka, Leningrad, 1975) [in Russian]. E. Rodríguez-Reyna, A. F. Fuentes, M. Maczka, J. Hanuza, Kh. Boulahya, and U. Amador, Solid State Sci. 8, 168 (2006). I. A. Vainshtein, A. F. Zatsepin, V. S. Kortov, and Yu. V. Shchapova, Phys. Solid State 42, 230 (2000). F. M. Ryan, W. Lehmann, D. W. Feldman, and J. Murphy, J. Electrochem. Soc. 121, 1475 (1974). M. G. Zuev, A. M. Karpov, and A. S. Shkvarin, J. Solid State Chem. 184, 52 (2011). C. Zhang, J. Yang, C. Lin, Ch. Li, and J. Lin, J. Solid State Chem. 182, 1673 (2009). J. Chen, Y. Liu, H. Liu, D. Yang, H. Ding, M. Fang, and Zh. Huang, RSC Adv. 4, 18234 (2014). M. Singh, P. D. Sahare, P. Kumar, and Sh. Bahl, J. Lumin. Appl. 3, 1 (2016). E. Malchukova and B. Boizot, Mater. Res. Bull. 45, 1299 (2010). A. F. Zatsepin, A. I. Kukharenko, V. A. Pustovarov, V. Yu. Yakovlev, and S. O. Cholakh, Phys. Solid State 51, 465 (2009). R. Yokota, J. Phys. Soc. Jpn. 23, 129 (1967). G. Blasse and A. Bril, Philips Technol. Rev. 31, 304 (1970). P. Dorenbos, J. Lumin. 104, 239 (2003).