New Mechanistic Advances in FcεRI-Mast Cell–Mediated Allergic Signaling

Clinical Reviews in Allergy - Tập 63 - Trang 431-446 - 2022
Yang Li1, Patrick S. C. Leung2, M. Eric Gershwin2, Junmin Song3
1Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
2Division of Rheumatology/Allergy and Clinical Immunology, School of Medicine, University of California, Davis, USA
3Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China

Tóm tắt

Mast cells originate from the CD34+/CD117+ hematopoietic progenitors in the bone marrow, migrate into circulation, and ultimately mature and reside in peripheral tissues. Microbiota/metabolites and certain immune cells (e.g., Treg cells) play a key role in maintaining immune tolerance. Cross-linking of allergen-specific IgE on mast cells activates the high-affinity membrane-bound receptor FcεRI, thereby initiating an intracellular signal cascade, leading to degranulation and release of pro-inflammatory mediators. The intracellular signal transduction is intricately regulated by various kinases, transcription factors, and cytokines. Importantly, multiple signal components in the FcεRI-mast cell–mediated allergic cascade can be targeted for therapeutic purposes. Pharmacological interventions that include therapeutic antibodies against IgE, FcεRI, and cytokines as well as inhibitors/activators of several key intracellular signaling molecues have been used to inhibit allergic reactions. Other factors that are not part of the signal pathway but can enhance an individual’s susceptibility to allergen stimulation are referred to as cofactors. Herein, we provide a mechanistic overview of the FcεRI-mast cell–mediated allergic signaling. This will broaden our scope and visions on specific preventive and therapeutic strategies for the clinical management of mast cell–associated hypersensitivity reactions.

Tài liệu tham khảo

Abbas M, Moussa M, Akel H (2021) Type I hypersensitivity reaction, in StatPearls. 2021, StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.: Treasure Island (FL) Komi DE, Mortaz E, Amani S, Tiotiu A, Folkerts G, Adcock IM (2020) The role of mast cells in IgE-independent lung diseases. Clin Rev Allergy Immunol 58(3):377–387. https://doi.org/10.1007/s12016-020-08779-5 Dahlin JS, Maurer M, Metcalfe DD, Pejler G, Sagi‐Eisenberg R, Nilsson G (2022) The ingenious mast cell: contemporary insights into mast cell behavior and function. Allergy 77(1):83–99. https://doi.org/10.1111/all.14881 Elieh Ali Komi D, Wöhrl S, Bielory L (2020) Mast cell biology at molecular level: a comprehensive review. Clin Rev Allergy Immunol 58(3):342–365. https://doi.org/10.1007/s12016-019-08769-2 Miyake K, Shibata S, Yoshikawa S, Karasuyama H (2021) Basophils and their effector molecules in allergic disorders. Allergy 76(6):1693–1706. https://doi.org/10.1111/all.14662 Tanaka S, Furuta K (2021) Roles of IgE and histamine in mast cell maturation. Cells 10(8):2170. https://doi.org/10.3390/cells10082170 Reber LL, Hernandez JD, Galli SJ (2017) The pathophysiology of anaphylaxis. J Allergy Clin Immunol 140(2):335–348. https://doi.org/10.1016/j.jaci.2017.06.003 Spoerl D, Nigolian H, Czarnetzki C, Harr T (2017) Reclassifying anaphylaxis to neuromuscular blocking agents based on the presumed patho-mechanism: IgE-mediated, pharmacological adverse reaction or "innate hypersensitivity"? Int J Mol Sci 18(6):1223. https://doi.org/10.1089/jmf.2016.3853https://doi.org/10.3390/ijms18061223 Cianferoni A (2021) Non-IgE-mediated anaphylaxis. J Allergy Clin Immunol 147(4):1123–1131. https://doi.org/10.1016/j.jaci.2021.02.012 Sutton BJ, Davies AM (2015) Structure and dynamics of IgE-receptor interactions: FcεRI and CD23/FcεRII. Immunol Rev 268(1):222–35. https://doi.org/10.1111/imr.12340 Kraft S, Kinet JP (2007) New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 7(5):365–78. https://doi.org/10.1038/nri2072 Renz H, Allen KJ, Sicherer SH, Sampson HA, Lack G, Beyer K, Oettgen HC (2018) Food allergy. Nat Rev Dis Primers 4:17098. https://doi.org/10.1038/nrdp.2017.98 Tejedor Alonso MA, Moro Moro MM, Múgica García MV (2015) Epidemiology of anaphylaxis. Clin Exp Allergy 45(6):1027–39. https://doi.org/10.1111/cea.12418 Loh W, Tang MLK (2018) The epidemiology of food allergy in the global context. Int J Environ Res Public Health 15(9):2043. https://doi.org/10.3390/ijerph15092043 Lei DK, Grammer LC (2019) An overview of allergens. Allergy Asthma Proc 40(6):362–365. https://doi.org/10.2500/aap.2019.40.4247 Cheng L, Chen J, Fu Q et al (2018) Chinese society of allergy guidelines for diagnosis and treatment of allergic rhinitis. Allergy Asthma Immunol Res 10(4):300–353. https://doi.org/10.4168/aair.2018.10.4.300 Beatty AL, Peyser ND, Butcher XE, Cocohoba JM, Lin F, Olgin JE, Pletcher MJ, Marcus GM (2021) Analysis of COVID-19 vaccine type and adverse effects following vaccination. JAMA Netw Open 4(12):e2140364. https://doi.org/10.1001/jamanetworkopen.2021.40364 Cabanillas B (2020) Gluten-related disorders: celiac disease, wheat allergy, and nonceliac gluten sensitivity. Crit Rev Food Sci Nutr 60(15):2606–2621. https://doi.org/10.1080/10408398.2019.1651689 Thouvenot B, Roitel O, Tomasina et al (2020) Transcriptional frameshifts contribute to protein allergenicity. J Clin Invest 130(10):5477–5492. https://doi.org/10.1172/jci126275 Zhang Z, Li, Lin Z (2021) Reducing the allergenicity of shrimp tropomyosin and allergy desensitization based on glycation modification. J Agric Food Chem 69(49):14742–14750. https://doi.org/10.1021/acs.jafc.1c03953 Liu J, Chen WM, Shao YH, Zhang JL, Tu ZC (2020) The mechanism of the reduction in allergenic reactivity of bovine α-lactalbumin induced by glycation, phosphorylation and acetylation. Food Chem 310: 125853. https://doi.org/10.1016/j.foodchem.2019.125853 Sicherer SH, Warren CM, Dant C, Gupta RS, Nadeau KC (2020) Food allergy from infancy through adulthood. J Allergy Clin Immunol Pract 8(6):1854–1864. https://doi.org/10.1016/j.jaip.2020.02.010 Tedner SG, Asarnoj A, Thulin H, Westman M (2021) Food allergy and hypersensitivity reactions in children and adults-a review. J Intern Med 291(3):283–302. https://doi.org/10.1111/joim.13422 Henmar H, Nedergaard Larsen J, Lund L, Hvalsøe Meno K, Ferreras M (2022) Comparison of intact allergen extracts and allergoids for subcutaneous immunotherapy - the effect of chemical modification differs both between species and between individual allergen molecules. J Investig Allergol Clin Immunol: 0.https://doi.org/10.18176/jiaci.0783 Brough HA, Nadeau KC (2020) Epicutaneous sensitization in the development of food allergy: what is the evidence and how can this be prevented? Allergy 75(9):2185–2205. https://doi.org/10.1111/all.14304 Brough HA, Simpson A, Makinson K et al (2014) Peanut allergy: effect of environmental peanut exposure in children with filaggrin loss-of-function mutations. J Allergy Clin Immunol 134(4):867–875.e1. https://doi.org/10.1016/j.jaci.2014.08.011 Redhu D, Franke K, Kumari V, Francuzik W (2020) Thymic stromal lymphopoietin production induced by skin irritation results from concomitant activation of protease-activated receptor 2 and interleukin 1 pathways. Br J Dermatol 182(1):119–129. https://doi.org/10.1111/bjd.17940 Berin MC, Agashe C, Burks AW et al (2022) Allergen-specific T cells and clinical features of food allergy: lessons from CoFAR immunotherapy cohorts. J Allergy Clin Immunol 149(4):1373–1382.e12. https://doi.org/10.1016/j.jaci.2021.09.029 Nguyen SMT, Rupprecht CP, Haque A, Pattanaik D, Yusin J, Krishnaswamy G (2021) Mechanisms governing anaphylaxis: inflammatory cells, mediators, endothelial gap junctions and beyond. Int J Mol Sci 22(15):7785. https://doi.org/10.3390/ijms22157785 Chen W, Sivaprasad U, Gibson AM et al (2013) IL-13 receptor α2 contributes to development of experimental allergic asthma. J Allergy Clin Immunol 132(4):951–8.e1–6. https://doi.org/10.1016/j.jaci.2013.04.016 Russkamp D, Aguilar-Pimentel A, Alessandrini F et al (2019) IL-4 receptor α blockade prevents sensitization and alters acute and long-lasting effects of allergen-specific immunotherapy of murine allergic asthma. Allergy 74(8):1549–1560. https://doi.org/10.1111/all.13759 Crotty S (2019) T follicular helper cell biology: a decade of discovery and diseases. Immunity 50(5):1132–1148. https://doi.org/10.1016/j.immuni.2019.04.011 Gowthaman U, Chen JS (2019) Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science 365:(6456). https://doi.org/10.1126/science.aaw6433 Suprun M, Sicherer SH, Wood RA et al (2020) Early epitope-specific IgE antibodies are predictive of childhood peanut allergy. J Allergy Clin Immunol 146(5):1080–1088. https://doi.org/10.1016/j.jaci.2020.08.005 Leyva-Castillo JM, Galand C, Kam C et al (2019) Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity 50(5):1262–1275.e4. https://doi.org/10.1016/j.immuni.2019.03.023 Kawasaki A, Ito N, Murai H, Yasutomi M, Naiki H, Ohshima Y (2018) Skin inflammation exacerbates food allergy symptoms in epicutaneously sensitized mice. Allergy 73(6):1313–1321. https://doi.org/10.1111/all.13404 Kulis MD, Smeekens JM, Immormino RM, Moran TP (2021) The airway as a route of sensitization to peanut: an update to the dual allergen exposure hypothesis. J Allergy Clin Immunol 148(3):689–693. https://doi.org/10.1016/j.jaci.2021.05.035 Datema MR, Eller E, Zwinderman AH, Poulsen LK, Versteeg SA, van Ree R, Bindslev-Jensen C (2019) Ratios of specific IgG(4) over IgE antibodies do not improve prediction of peanut allergy nor of its severity compared to specific IgE alone. Clin Exp Allergy 49(2):216–226. https://doi.org/10.1111/cea.13286 Yanagida N, Sato S, Takahashi K, Nagakura KI, Asaumi T (2018) Increasing specific immunoglobulin E levels correlate with the risk of anaphylaxis during an oral food challenge. Pediatr Allergy Immunol 29(4):417–424. https://doi.org/10.1016/j.ejphar.2018.03.035https://doi.org/10.1111/pai.12896 Asrat S, Kaur N (2020) Chronic allergen exposure drives accumulation of long-lived IgE plasma cells in the bone marrow, giving rise to serological memory. Sci Immunol 5(43):eaav8402. https://doi.org/10.4103/aca.ACA_100_19https://doi.org/10.1126/sciimmunol.aav8402 Jiménez-Saiz R, Chu DK, Mandur TS et al (2017) Lifelong memory responses perpetuate humoral T(H)2 immunity and anaphylaxis in food allergy. J Allergy Clin Immunol 140(6):1604–1615.e5. https://doi.org/10.1016/j.jaci.2017.01.018 Shamji MH, Valenta R (2021) The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy 76(12):3627–3641. https://doi.org/10.1111/all.14908 Sackesen C, Erman C (2020) IgE and IgG4 binding to lentil epitopes in children with red and green lentil allergy. Pediatr Allergy Immunol 31(2):158–166. https://doi.org/10.1111/pai.13136 Kanchan K, Grinek S, Bahnson HT et al (2022) HLA alleles and sustained peanut consumption promote IgG4 responses in subjects protected from peanut allergy. J Clin Invest 132(1):e152070. https://doi.org/10.1172/jci152070 Nagata Y, Suzuki R (2022) FcεRI: a master regulator of mast cell functions. Cells 11(4):622. https://doi.org/10.3390/cells11040622 Gasser P, Tarchevskaya SS, Guntern P (2020) The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat Commun 11(1):165. https://doi.org/10.1038/s41467-019-13815-w Fiebiger E, Tortorella D, Jouvin MH, Kinet JP, Ploegh HL (2005) Cotranslational endoplasmic reticulum assembly of FcepsilonRI controls the formation of functional IgE-binding receptors. J Exp Med 201(2):267–77. https://doi.org/10.1084/jem.20041384 Guo Y, Proaño-Pérez E, Muñoz-Cano R (2021) Anaphylaxis: focus on transcription factor activity. Int J Mol Sci 22(9):4935. https://doi.org/10.1080/13880209.2021.1928242https://doi.org/10.3390/ijms22094935 Arthur GK, Cruse G (2022) Regulation of trafficking and signaling of the high affinity IgE receptor by FcεRIβ and the potential impact of FcεRIβ splicing in allergic inflammation. Int J Mol Sci 23(2):788. https://doi.org/10.3390/ijms23020788 Cruse G, Yin Y, Fukuyama T, Desai A, Arthur GK, Bäumer W, Beaven MA, Metcalfe DD (2016) Exon skipping of FcεRIβ eliminates expression of the high-affinity IgE receptor in mast cells with therapeutic potential for allergy. Proc Natl Acad Sci USA 113(49):14115–14120. https://doi.org/10.1073/pnas.1608520113 Arthur GK, Ehrhardt-Humbert LC, Snider DB, Jania C, Tilley SL, Metcalfe DD, Cruse G (2020) The FcεRIβ homologue, MS4A4A, promotes FcεRI signal transduction and store-operated Ca(2+) entry in human mast cells. Cell Signal 71:109617. https://doi.org/10.1016/j.cellsig.2020.109617 Kim M, Kwon Y, Jung HS, Kim Y, Jeoung D (2019) FcεRI-HDAC3-MCP1 signaling axis promotes passive anaphylaxis mediated by cellular interactions. Int J Mol Sci 20(19):4964. https://doi.org/10.3390/ijms20194964 Andrews NL, Pfeiffer JR, Martinez AM, Haaland DM, Davis RW, Kawakami T, Oliver JM, Wilson BS, Lidke DS (2009) Small, mobile FcepsilonRI receptor aggregates are signaling competent. Immunity 31(3):469–79. https://doi.org/10.1016/j.immuni.2009.06.026 Carroll-Portillo A, Spendier K, Pfeiffer J et al (2010) Formation of a mast cell synapse: Fc epsilon RI membrane dynamics upon binding mobile or immobilized ligands on surfaces. J Immunol 184(3):1328–38. https://doi.org/10.4049/jimmunol.0903071 Gast M, Preisinger C, Nimmerjahn F, Huber M (2018) IgG-independent co-aggregation of FcεRI and FcγRIIB results in LYN- and SHIP1-dependent tyrosine phosphorylation of FcγRIIB in murine bone marrow-derived mast cells. Front Immunol 9:1937. https://doi.org/10.3389/fimmu.2018.01937 Mahajan A and LA Youssef (2017) Allergen valency, dose, and FcεRI occupancy set thresholds for secretory responses to Pen a 1 and motivate design of hypoallergens. J Immunol 198(3):1034–1046. https://doi.org/10.4049/jimmunol.1601334 Huber M, Gibbs BF (2015) SHIP1 and the negative control of mast cell/basophil activation by supra-optimal antigen concentrations. Mol Immunol 63(1):32–7. https://doi.org/10.1016/j.molimm.2014.02.017 Suzuki R, Leach S, Liu W, Ralston E, Scheffel J, Zhang W, Lowell CA, Rivera J (2014) Molecular editing of cellular responses by the high-affinity receptor for IgE. Science 343(6174):1021–5. https://doi.org/10.1126/science.1246976 Bucaite G, Kang-Pettinger T, Moreira J, Gould HJ (2019) Interplay between affinity and valency in effector cell degranulation: a model system with polcalcin allergens and human patient-derived IgE antibodies. J Immunol 203(7):1693–1700. https://doi.org/10.4049/jimmunol.1900509 Nagata Y, Suzuki R (2021) FcεRI cluster size determines effective mast cell desensitization without effector responses in vitro. Int Arch Allergy Immunol 183(4):453–461. https://doi.org/10.1159/000520132 Hemmings O, Niazi U, Kwok M, James LK, Lack G, Santos AF (2021) Peanut diversity and specific activity are the dominant IgE characteristics for effector cell activation in children. J Allergy Clin Immunol 148(2):495–505.e14. https://doi.org/10.1016/j.jaci.2021.02.029 Bag N, Wagenknecht-Wiesner A, Lee A, Shi SM, Holowka DA, Baird BA (2021) Lipid-based and protein-based interactions synergize transmembrane signaling stimulated by antigen clustering of IgE receptors. Proc Natl Acad Sci USA 118(35):e2026583118. https://doi.org/10.1073/pnas.2026583118 Travers T, Kanagy WA, Mansbach RA, Jhamba E, Cleyrat C, Goldstein B, Lidke DS, Wilson BS, Gnanakaran S (2019) Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. Mol Biol Cell 30(17):2331–2347. https://doi.org/10.1091/mbc.E18-11-0722 Simonowski A, Wilhelm T, Habib P, Zorn CN, Huber M (2020) Differential use of BTK and PLC in FcεRI- and KIT-mediated mast cell activation: a marginal role of BTK upon KIT activation. Biochim Biophys Acta Mol Cell Res 1867(4):118622. https://doi.org/10.1016/j.bbamcr.2019.118622 Park YH, Kim DK, Kim HS et al (2019) WZ3146 inhibits mast cell Lyn and Fyn to reduce IgE-mediated allergic responses in vitro and in vivo. Toxicol Appl Pharmacol 383: 114763. https://doi.org/10.1016/j.taap.2019.114763 Schwartz SL, Cleyrat C, Olah MJ, Relich PK, Phillips GK, Hlavacek WS, Lidke KA, Wilson BS, Lidke DS (2017) Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Mol Biol Cell 28(23):3397–3414. https://doi.org/10.1091/mbc.E17-06-0350 Harmon B, Chylek LA, Liu Y et al (2017) Timescale separation of positive and negative signaling creates history-dependent responses to IgE receptor stimulation. Sci Rep 7(1):15586. https://doi.org/10.1038/s41598-017-15568-2 Dispenza MC, Krier-Burris RA, Chhiba KD, Undem BJ, Robida PA, Bochner BZ (2020) Bruton’s tyrosine kinase inhibition effectively protects against human IgE-mediated anaphylaxis. J Clin Invest 130(9):4759–4770. https://doi.org/10.1172/jci138448 Sanderson MP, Wex E, Kono T, Uto K, Schnapp A (2010) Syk and Lyn mediate distinct Syk phosphorylation events in FcɛRI-signal transduction: implications for regulation of IgE-mediated degranulation. Mol Immunol 48(1–3):171–8. https://doi.org/10.1016/j.molimm.2010.08.012 Hammel I, Lagunoff D, Galli SJ (2010) Regulation of secretory granule size by the precise generation and fusion of unit granules. J Cell Mol Med 14(7):1904–16. https://doi.org/10.1111/j.1582-4934.2010.01071.x Leong E, Pang Z, Stadnyk AW, Lin TJ (2021) Calcineurin Aα contributes to IgE-dependent mast-cell mediator secretion in allergic inflammation. J Innate Immun: 1–15. https://doi.org/10.1159/000520040 Fahrner M, Schindl R, Romanin C (2018) Studies of structure-function and subunit composition of Orai/STIM Channel, in calcium entry channels in non-excitable cells, J.A. Kozak and J.W. Putney, Jr., Editors. CRC Press/Taylor & Francis © 2017 by Taylor & Francis Group, LLC.: Boca Raton (FL). p. 25–50 Sun R, Yang Y, Ran X, Yang T (2016) Calcium influx of mast cells is inhibited by aptamers targeting the first extracellular domain of Orai1. PLoS One 11(7):e0158223. https://doi.org/10.1371/journal.pone.0158223 Tsvilovskyy V, Solís-López A, Schumacher D, Medert R, Roers A, Kriebs U, Freichel M (2018) Deletion of Orai2 augments endogenous CRAC currents and degranulation in mast cells leading to enhanced anaphylaxis. Cell Calcium 71: 24–33. https://doi.org/10.1016/j.ceca.2017.11.004 Arlt E, Fraticelli M, Tsvilovskyy V (2020) TPC1 deficiency or blockade augments systemic anaphylaxis and mast cell activity. Proc Natl Acad Sci USA 117(30):18068–18078. https://doi.org/10.1073/pnas.1920122117 Wu T, Ma L, Jin X et al (2021) S100A4 is critical for a mouse model of allergic asthma by impacting mast cell activation. Front Immunol 12: 692733. https://doi.org/10.1016/j.bcp.2021.114722https://doi.org/10.3389/fimmu.2021.692733 Cardenas RA, Gonzalez R, Sanchez E et al (2021) SNAP23 is essential for platelet and mast cell development and required in connective tissue mast cells for anaphylaxis. J Biol Chem 296:100268. https://doi.org/10.1016/j.jbc.2021.100268 Agarwal V, Naskar P, Agasti S, Khurana GK, Vishwakarma P, Lynn AM, Roche PA, Puri N (2019) The cysteine-rich domain of synaptosomal-associated protein of 23 kDa (SNAP-23) regulates its membrane association and regulated exocytosis from mast cells. Biochim Biophys Acta Mol Cell Res 1866(10):1618–1633. https://doi.org/10.1016/j.bbamcr.2019.06.015 Sanchez E, Gonzalez EA, Moreno DS et al (2019) Syntaxin 3, but not syntaxin 4, is required for mast cell-regulated exocytosis, where it plays a primary role mediating compound exocytosis. J Biol Chem 294(9):3012–3023. https://doi.org/10.1074/jbc.RA118.005532 Madera-Salcedo IK, Danelli L, Tiwari N (2018) Tomosyn functions as a PKCδ-regulated fusion clamp in mast cell degranulation. Sci Signal 11(537):eaan4350. https://doi.org/10.1126/scisignal.aan4350 Cabeza JM, Acosta J, Alés E (2013) Mechanisms of granule membrane recapture following exocytosis in intact mast cells. J Biol Chem 288(28):20293-305. https://doi.org/10.1074/jbc.M113.459065 Sharma N, Ponce M, Kaul S, Pan Z, Berry DM, Eiwegger T, McGlade CJ (2019) SLAP is a negative regulator of FcεRI receptor-mediated signaling and allergic response. Front Immunol 10:1020. https://doi.org/10.3389/fimmu.2019.01020 Lin KC, Huang DY, Huang DW, Tzeng SJ, Lin WW (2016) Inhibition of AMPK through Lyn-Syk-Akt enhances FcεRI signal pathways for allergic response. J Mol Med (Berl) 94(2):183–94. https://doi.org/10.1007/s00109-015-1339-2 Jin F, Li X, Deng Y et al (2019) The orphan nuclear receptor NR4A1 promotes FcεRI-stimulated mast cell activation and anaphylaxis by counteracting the inhibitory LKB1/AMPK axis. Allergy 74(6):1145–1156. https://doi.org/10.1111/all.13702 Chang HW, Kanegasaki S (2020) A common signaling pathway leading to degranulation in mast cells and its regulation by CCR1-ligand. Allergy 75(6):1371–1381. https://doi.org/10.1111/all.14186 Ohneda K, Ohmori S, Yamamoto M (2019) Mouse tryptase gene expression is coordinately regulated by GATA1 and GATA2 in bone marrow-derived mast cells. Int J Mol Sci 20(18):4603. https://doi.org/10.3390/ijms20184603 Kasakura K, Nagata K, Miura R (2020) Cooperative regulation of the mucosal mast cell-specific protease genes Mcpt1 and Mcpt2 by GATA and Smad transcription factors. J Immunol 204(6):1641–1649. https://doi.org/10.4049/jimmunol.1900094 Li Y, Gao J (2021) GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super-enhancers. Nat Commun 12(1):494. https://doi.org/10.1038/s41467-020-20766-0 Ohmori S, Moriguchi T, Noguchi Y et al (2015) GATA2 is critical for the maintenance of cellular identity in differentiated mast cells derived from mouse bone marrow. Blood 125(21):3306–15. https://doi.org/10.1182/blood-2014-11-612465 Li Y, Liu B, Harmacek L et al (2018) The transcription factors GATA2 and microphthalmia-associated transcription factor regulate Hdc gene expression in mast cells and are required for IgE/mast cell-mediated anaphylaxis. J Allergy Clin Immunol 142(4):1173–1184. https://doi.org/10.1007/s11882-018-0756-zhttps://doi.org/10.1016/j.jaci.2017.10.043 Kobayashi T, Shimabukuro-Demoto S, Tsutsui H, Toyama-Sorimachi N (2019) Type I interferon limits mast cell-mediated anaphylaxis by controlling secretory granule homeostasis. PLoS Biol 17(11):e3000530. https://doi.org/10.1371/journal.pbio.3000530 Oda Y, Kasakura K, Fujigaki I, Kageyama A, Okumura K, Ogawa H, Yashiro T, Nishiyama C (2018) The effect of PU.1 knockdown on gene expression and function of mast cells. Sci Rep 8(1):2005. https://doi.org/10.1111/imr.12622https://doi.org/10.1038/s41598-018-19378-y Chelombitko MA, Chernyak BV, Fedorov AV, Zinovkin RA, Razin E, Paruchuru LB (2020) The role played by mitochondria in FcεRI-dependent mast cell activation. Front Immunol 11:584210. https://doi.org/10.3389/fimmu.2020.584210 Paruchuru LB, Govindaraj S, Razin E (2022) The critical role played by mitochondrial MITF serine 73 phosphorylation in immunologically activated mast cells. Cells 11(3):589. https://doi.org/10.3390/cells11030589 Sharkia I, Hadad Erlich T, Landolina N et al (2017) Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia transcription factor. J Allergy Clin Immunol 140(1):204–214.e8. https://doi.org/10.1016/j.jaci.2016.09.047 Moñino-Romero S, Erkert L, Schmidthaler K, Diesner SC, Sallis BF, Pennington L (2019) The soluble isoform of human FcɛRI is an endogenous inhibitor of IgE-mediated mast cell responses. Allergy 74(2):236–245. https://doi.org/10.1111/all.13567 Xie G, Yang H, Peng X et al (2018) Mast cell exosomes can suppress allergic reactions by binding to IgE. J Allergy Clin Immunol 141(2):788–791. https://doi.org/10.1016/j.jaci.2017.07.040 Krajewski D, Polukort SH, Gelzinis J et al (2020) Protein disulfide isomerases regulate IgE-mediated mast cell responses and their inhibition confers protective effects during food allergy. Front Immunol 11:606837. https://doi.org/10.3389/fimmu.2020.606837 Li X, Kanegasaki S, Jin F, Deng Y, Kim JR, Chang HW, Tsuchiya T (2018) Simultaneous induction of HSP70 expression, and degranulation, in IgE/Ag-stimulated or extracellular HSP70-stimulated mast cells. Allergy 73(2):361–368. https://doi.org/10.1111/all.13296 Folkerts J, Redegeld F, Folkerts G, Blokhuis B, van den Berg MPM, de Bruijn MWJ, van IWJF (2020) Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy 75(8):1966–1978. https://doi.org/10.1111/all.14254 Doré KA, Kashiwakura JI, McDonnell JM, Gould HJ, Kawakami T, Sutton BJ, Davies AM (2018) Crystal structures of murine and human Histamine-Releasing Factor (HRF/TCTP) and a model for HRF dimerisation in mast cell activation. Mol Immunol 93:216–222. https://doi.org/10.1016/j.molimm.2017.11.022 Brosnan ME, Brosnan JT (2020) Histidine metabolism and function. J Nutr 150(Suppl 1):2570s-2575s. https://doi.org/10.1093/jn/nxaa079 Kawakami Y, Kurosawa Y, Oltean D et al (2022) Novel inhibitors of histamine-releasing factor suppress food allergy in a murine model. Allergol Int 71(1):147–149. https://doi.org/10.1016/j.alit.2021.07.005 Jo-Watanabe A, Okuno T (2019) The role of leukotrienes as potential therapeutic targets in allergic disorders. Int J Mol Sci 20(14):3580. https://doi.org/10.3390/ijms20143580 Lee K, Lee SH, Kim TH (2020) The biology of prostaglandins and their role as a target for allergic airway disease therapy. Int J Mol Sci 21(5):1851. https://doi.org/10.3390/ijms21051851 Koga T, Sasaki F, Saeki K, Tsuchiya S, Okuno T, Ohba M, Ichiki T, Iwamoto S (2021) Expression of leukotriene B(4) receptor 1 defines functionally distinct DCs that control allergic skin inflammation. Cell Mol Immunol 18(6):1437–1449. https://doi.org/10.1038/s41423-020-00559-7 Xiong Y, Cui X, Li W et al (2019) BLT1 signaling in epithelial cells mediates allergic sensitization via promotion of IL-33 production. Allergy 74(3):495–506. https://doi.org/10.1111/all.13656 Peebles Jr. RS (2019) Prostaglandins in asthma and allergic diseases. Pharmacol Ther 193: 1–19. https://doi.org/10.1016/j.pharmthera.2018.08.001 Rastogi S, Willmes DM, Nassiri M, Babina M, Worm M (2020) PGE(2) deficiency predisposes to anaphylaxis by causing mast cell hyperresponsiveness. J Allergy Clin Immunol 146(6):1387–1396.e13. https://doi.org/10.1016/j.jaci.2020.03.046 Plaza J, Torres R (2020) In vitro and in vivo validation of EP2-receptor agonism to selectively achieve inhibition of mast cell activity. Allergy Asthma Immunol Res 12(4):712–728. https://doi.org/10.1016/j.alit.2020.04.001https://doi.org/10.4168/aair.2020.12.4.712 Tacquard C, Oulehri W, Collange O, Garvey LH, Nicoll S, Tuzin N, Geny B, Mertes PM (2020) Treatment with a platelet-activating factor receptor antagonist improves hemodynamics and reduces epinephrine requirements, in a lethal rodent model of anaphylactic shock. Clin Exp Allergy 50(3):383–390. https://doi.org/10.1111/cea.13540 Khan MI, Hariprasad G (2020) Structural modeling of wild and mutant forms of human plasma platelet activating factor-acetyl hydrolase enzyme. J Inflamm Res 13: 1125–1139. https://doi.org/10.2147/jir.s274940 Schauberger E, Peinhaupt M, Cazares T, Lindsley AW (2016) Lipid mediators of allergic disease: pathways, treatments, and emerging therapeutic targets. Curr Allergy Asthma Rep 16(7):48. https://doi.org/10.1007/s11882-016-0628-3 Hox V, Desai A, Bandara G, Gilfillan AM, Metcalfe DD, Olivera A (2015) Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production. J Allergy Clin Immunol 135(3):729–36.e5. https://doi.org/10.1016/j.jaci.2014.11.003 Stuehr DJ, Misra S, Dai Y, Ghosh A (2021) Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. J Biol Chem 296:100336. https://doi.org/10.1016/j.jbc.2021.100336 Ghosh A, Koziol-White CJ, Asosingh K et al (2016) Soluble guanylate cyclase as an alternative target for bronchodilator therapy in asthma. Proc Natl Acad Sci USA 113(17):E2355–62. https://doi.org/10.1073/pnas.1524398113 Ramu S, Akbarshahi H, Mogren S et al (2021) Direct effects of mast cell proteases, tryptase and chymase, on bronchial epithelial integrity proteins and anti-viral responses. BMC Immunol 22(1):35. https://doi.org/10.1186/s12865-021-00424-w Zhou X, Wei T, Cox CW, Jiang Y, Roche WR, Walls AF (2019) Mast cell chymase impairs bronchial epithelium integrity by degrading cell junction molecules of epithelial cells. Allergy 74(7):1266–1276. https://doi.org/10.1111/all.13666 Berlin F, Mogren S, Tutzauer J (2021) Mast cell proteases tryptase and chymase induce migratory and morphological alterations in bronchial epithelial cells. Int J Mol Sci 22(10):5250. https://doi.org/10.3390/ijms22105250 Metz M, Torene R, Kaiser S et al (2019) Omalizumab normalizes the gene expression signature of lesional skin in patients with chronic spontaneous urticaria: a randomized, double-blind, placebo-controlled study. Allergy 74(1):141–151. https://doi.org/10.1111/all.13547 Dispenza MC, Bochner BS, MacGlashan Jr. DW (2020) Targeting the FcεRI pathway as a potential strategy to prevent food-induced anaphylaxis. Front Immunol 11: 614402. https://doi.org/10.3389/fimmu.2020.614402 Fiocchi A, Vickery BP, Wood RA (2021) The use of biologics in food allergy. Clin Exp Allergy 51(8):1006–1018. https://doi.org/10.1111/cea.13897 Shamji MH, Palmer E, Layhadi JA, Moraes TJ, Eiwegger T (2021) Biological treatment in allergic disease. Allergy 76(9):2934–2937. https://doi.org/10.1111/all.14954 Davies AM, Allan EG, Keeble AH et al (2017) Allosteric mechanism of action of the therapeutic anti-IgE antibody omalizumab. J Biol Chem 292(24):9975–9987. https://doi.org/10.1074/jbc.M117.776476 Jensen RK, Jabs F, Miehe M, Mølgaard B, and W Pfützner (2020) Structure of intact IgE and the mechanism of ligelizumab revealed by electron microscopy. Allergy 75(8):1956-1965.https://doi.org/10.1111/all.14222 Wedi B, Traidl S (2021) Anti-IgE for the treatment of chronic urticaria. Immunotargets Ther 10: 27–45. https://doi.org/10.2147/itt.s261416 Ando T, Kitaura J (2021) Tuning IgE: IgE-associating molecules and their effects on IgE-dependent mast cell reactions. Cells 10(7). https://doi.org/10.3390/cells10071697 Chang X (2021) Low-affinity but high-avidity interactions may offer an explanation for IgE-mediated allergen cross-reactivity. Einstein (Sao Paulo) 76(8):2565–2574. https://doi.org/10.31744/einstein_journal/2021MD5703https://doi.org/10.1111/all.14864 Zhang K, Elias M, Zhang H, Liu J, Kepley C, Bai Y, Metcalfe DD (2019) Inhibition of allergic reactivity through targeting FcεRI-bound IgE with humanized low-affinity antibodies. J Immunol 203(11):2777–2790. https://doi.org/10.4049/jimmunol.1900112 Orengo JM, Radin AR, Kamat V et al (2018) Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement. Nat Commun 9(1):1421. https://doi.org/10.1038/s41467-018-03636-8 Khodoun MV, Morris SC, Angerman E et al (2020) Rapid desensitization of humanized mice with anti-human FcεRIα monoclonal antibodies. J Allergy Clin Immunol 145(3):907–921.e3. https://doi.org/10.1016/j.jaci.2019.12.003 Khodoun MV, Morris SC, Shao WH et al (2021) Suppression of IgE-mediated anaphylaxis and food allergy with monovalent anti-FcεRIα mAbs. J Allergy Clin Immunol 147(5):1838–1854.e4. https://doi.org/10.1016/j.jaci.2020.10.045 Khodoun MV, Tomar S, Tocker JE, Wang YH, Finkelman FD (2018) Prevention of food allergy development and suppression of established food allergy by neutralization of thymic stromal lymphopoietin, IL-25, and IL-33. J Allergy Clin Immunol 141(1):171–179.e1. https://doi.org/10.1016/j.jaci.2017.02.046 Duan S, Koziol-White CJ, Jester Jr. WF, Smith SA, Nycholat CM, Macauley MS, Panettieri Jr. RA, Paulson JC (2019) CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Invest 129(3):1387–1401. https://doi.org/10.1172/jci125456 Hu J, Chen J, Ye L, Cai Z, Sun J, Ji K (2018) Anti-IgE therapy for IgE-mediated allergic diseases: from neutralizing IgE antibodies to eliminating IgE(+) B cells. Clin Transl Allergy 8: 27. https://doi.org/10.1186/s13601-018-0213-z Muñoz-Cano R, Pascal M, Araujo G, Goikoetxea MJ, Valero AL, Picado C, Bartra J (2017) Mechanisms, cofactors, and augmenting factors involved in anaphylaxis. Front Immunol 8:1193. https://doi.org/10.3389/fimmu.2017.01193 Versluis A, van Os-Medendorp H, Blom WM, Michelsen-Huisman AD, Castenmiller AAD, Noteborn H, Houben GF, Knulst AC (2019) Potential cofactors in accidental food allergic reactions are frequently present but may not influence severity and occurrence. Clin Exp Allergy 49(2):207–215. https://doi.org/10.1111/cea.13282 Kennard L, I Thomas, K Rutkowski, et al. (2018) A multicenter evaluation of diagnosis and management of omega-5 gliadin allergy (also known as wheat-dependent exercise-induced anaphylaxis) in 132 adults. J Allergy Clin Immunol Pract 6(6):1892–1897. https://doi.org/10.1016/j.jaip.2018.02.013 Scherf KA, Lindenau A-C, Valentini L et al (2019) Cofactors of wheat-dependent exercise-induced anaphylaxis do not increase highly individual gliadin absorption in healthy volunteers. Clin Transl Allergy 9: 19. https://doi.org/10.1186/s13601-019-0260-0 Muñoz-Cano R, San Bartolome C, Casas-Saucedo R et al (2020) Immune-mediated mechanisms in cofactor-dependent food allergy and anaphylaxis: effect of cofactors in basophils and mast cells. Front Immunol 11: 623071. https://doi.org/10.3389/fimmu.2020.623071 Li PH, Thomas I (2020) Differences in omega-5-gliadin allergy: East versus West. Asia Pac Allergy 10(1):e5. https://doi.org/10.5415/apallergy.2020.10.e5 Prosty C, Gabrielli S, Le M, Ensina LF, Zhang X, Netchiporouk E, Ben-Shoshan M (2022) Prevalence, management, and anaphylaxis risk of cold urticaria: a systematic review and meta-analysis. J Allergy Clin Immunol Pract 10(2):586–596.e4. https://doi.org/10.1016/j.jaip.2021.10.012 Liu JQ, Hu TY, Diao KY et al (2020) Cold stress promotes IL-33 expression in intestinal epithelial cells to facilitate food allergy development. Cytokine 136:155295. https://doi.org/10.1016/j.cyto.2020.155295 Asero R, Ariano R, Aruanno A et al (2021) Systemic allergic reactions induced by labile plant-food allergens: seeking potential cofactors. A multicenter study. Allergy 76(5):1473–1479. https://doi.org/10.1111/all.14634 Potuckova L, Draberova L, Halova I, Paulenda T, Draber P (2018) Positive and negative regulatory roles of C-terminal Src kinase (CSK) in FcεRI-mediated mast cell activation, independent of the transmembrane adaptor PAG/CSK-binding protein. Front Immunol 9:1771. https://doi.org/10.3389/fimmu.2018.01771 Kaplan AP, Giménez-Arnau AM, Saini SS (2017) Mechanisms of action that contribute to efficacy of omalizumab in chronic spontaneous urticaria. Allergy 72(4):519–533. https://doi.org/10.1111/all.13083 Abdel-Gadir A, Schneider L, Casini A, Charbonnier LM, Little SV, Harrington T, Umetsu DT, Rachid R, Chatila TA (2018) Oral immunotherapy with omalizumab reverses the Th2 cell-like programme of regulatory T cells and restores their function. Clin Exp Allergy 48(7):825–836. https://doi.org/10.1111/cea.13161 Pennington LF, Gasser P, Brigger D, Guntern P, Eggel A, Jardetzky TS (2021) Structure-guided design of ultrapotent disruptive IgE inhibitors to rapidly terminate acute allergic reactions. J Allergy Clin Immunol 148(4):1049–1060. https://doi.org/10.1016/j.jaci.2021.03.050 Yamazaki T Inui, M, Hiemori K et al (2019) Receptor-destroying enzyme (RDE) from Vibrio cholerae modulates IgE activity and reduces the initiation of anaphylaxis. J Biol Chem 294(17):6659–6669. https://doi.org/10.1074/jbc.RA118.006375 Dobranowski P, Sly LM (2018) SHIP negatively regulates type II immune responses in mast cells and macrophages. J Leukoc Biol. https://doi.org/10.1002/jlb.3mir0817-340r