New Integral Representations for the Fox–Wright Functions and Its Applications II
Tóm tắt
In this paper our aim is to establish new integral representations for the Fox–Wright function
$${}_{p}\Psi_{q}[^{(\alpha_{p},A_{p})}_{(\beta_{q},B_{q})}|z]$$
when
$$\mu=\sum_{j=1}^{q}\beta_{j}-\sum_{k=1}^{p}\alpha_{k}+\frac{p-q}{2}=-m,\;\;m\in\mathbb{N}_{0}.$$
In particular, closed-form integral expressions are derived for the four parameter Wright function under a special restriction on parameters. Exponential bounding inequalities are derived for a class of the Fox–Wright function. Moreover, complete monotonicity property is presented for these functions.
Tài liệu tham khảo
D. E. Karp and E. Prilepkina, ‘‘Some new facts concerning the delta neutral case of Fox’s -Function,’’ Comput. Methods Funct. Theory 17, 343–367 (2017). https://doi.org/10.1007/s40315-016-0183-x
NIST Handbook of Mathematical Functions, Ed. by F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge Univ. Press, Cambridge, 2010).
J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications (Academic Press, London, 1992). https://doi.org/10.1016/S0076-5392(08)62809-X
Yu. Luchko and R. Gorenflo, ‘‘Scale-invariant solutions of a partial differential equation of fractional order,’’ Fract. Calc. Appl. Anal. 1, 63–78 (1998).
D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis (Springer, Dordrecht, 1993). https://doi.org/10.1007/978-94-017-1043-5
A. M. Mathai, A Handbook of Generalized Special Functions for Statistical and Physical Sciences (Oxford Univ. Press, New York, 1993).
E. M. Wright, ‘‘The asymptotic expansion of the generalized hypergeometric function,’’ J. London Math. Soc. s1-10, 286–293 (1935). https://doi.org/10.1112/jlms/s1-10.40.286
A. M. Mathai, R. K. Saxena, and H. J. Haubold, The \(H\) -functions: Theory and Applications (Springer, New York, 2010). https://doi.org/10.1007/978-1-4419-0916-9
K. Mehrez and S. M. Sitnik, ‘‘Functional inequalities for the Mittag–Lefller functions,’’ Results Math. 72, 703–714 (2017). https://doi.org/10.1007/s00025-017-0664-x
K. Mehrez and S. M. Sitnik, ‘‘Turán type inequalities for classical and generalized Mittag–Leffler functions,’’ Anal Math. 44, 521–541 (2018). https://doi.org/10.1007/s10476-018-0404-9
K. Mehrez, ‘‘Functional inequalities for the Wright functions,’’ Integral Trans. Special Funct. 28, 130–144 (2017). https://doi.org/10.1080/10652469.2016.1254628
K. Mehrez, ‘‘New integral representations for the Fox–Wright functions and its applications,’’ J. Math. Anal. Appl. 468, 650–673 (2018). https://doi.org/10.1016/j.jmaa.2018.08.053
K. Mehrez, ‘‘Monotonicity patterns and functional inequalities for classical and generalized Wright functions,’’ Math. Inequal. Appl. 22, 901–916 (2019).
K. Mehrez and S. M. Sitnik, ‘‘Functional inequalities for the Fox–Wright functions,’’ Ramanujan J. 50, 263–287 (2019). https://doi.org/10.1007/s11139-018-0071-2
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006). https://doi.org/10.1016/S0304-0208(06)80001-0
A. A. Kilbas and M. Saigo, \(H\) -Transforms and Applications (CRC Press, Boca Raton, FL, 2004). https://doi.org/10.1201/9780203487372
T. K. Pogány and H. M. Srivastava, ‘‘Some Mathieu-type series associated with the Fox–Wright function,’’ Comput. Math. Appl. 57, 127–140 (2009). https://doi.org/10.1016/j.camwa.2008.07.016