New Hybrid Conjugate Gradient Method As A Convex Combination of Ls and Fr Methods

Acta Mathematica Scientia - Tập 39 Số 1 - Trang 214-228 - 2019
Snežana Djordjević1
1Faculty of Technology, University of Nis, Leskovac, Serbia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Al-Baali M. Descent property and global convergence of the Fletcher-Reeves method with inexact line search. IMA J Numer Anal, 1985, 5: 121–124

Andrei N. New hybrid conjugate gradient algorithms for unconstrained optimization. Encyclopedia of Optimization, 2009: 2560–2571

Andrei N. A hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization as a convex combination of Hestenes-Stiefel and Dai-Yuan algorithms. Studies in Informatics and Control, 2008, 17(4): 373–392

Andrei N. A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes-Stiefel and Dai-Yuan. Studies in Informatics and Control, 2008, 17(1): 55–70

Andrei N. Another hybrid conjugate gradient algorithm for unconstrained optimization. Numerical Algorithms, 2008, 47(2): 143–156

Andrei N. An unconstrained optimization test functions. Advanced Modeling and Optimization, An Electronic International Journal, 2008, 10: 147–161

Andrei N. Accelerated hybrid conjugate gradient algorithm with modified secant condition for unconstrained optimization. Numer Algorithms, 2010, 54: 23–46

Dai Y H, Yuan Y. Convergence properties of the Fletcher-Reeves method. IMA J Numer Anal, 1996, 16: 155–164

Dai Y H, Liao L Z. New conjugacy conditions and related nonlinear conjugate gradient methods. Appl Math Optim, 2001, 43: 87–101

Dai Y H, Yuan Y. A nonlinear conjugate gradient method with a strong global convergence property. SIAM J Optim, 1999, 10: 177–182

Dai Y H, Han J Y, Liu G H, Sun D F, Yin X, Yuan Y. Convergence properties of nonlinear conjugate gradient methods. SIAM J Optim, 1999, 10: 348–358

Dai Y H. A family of hybrid conjugate gradient methods for unconstrained optimization. Math Comp, 2003, 72: 1317–1328

Dai Y H, Yuan Y. A class of globally convergent conjugate gradient methods. Sci China Ser A, 2003, 46: 251–262

Đorđević S S. New hybrid conjugate gradient method as a convex combination of FR and PRP methods. Filomat, 2016, 30(11): 3083–3100

Dolan E D, Moré J J. Benchmarking optimization software with performance profiles. Math Programming, 2002, 91: 201–213

Fletcher R. Practical Methods of Optimization Vol. 1: Unconstrained Optimization. New York: John Wiley and Sons, 1987

Fletcher R, Reeves C. Function minimization by conjugate gradients. Comput J, 1964, 7: 149–154

Gilbert J C, Nocedal J. Global convergence properties of conjugate gradient methods for optimization. SIAM J Optim, 1992, 2: 21–42

Hager W W, Zhang H. A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J Optim, 2003, 16(1): 170–192

Hager W W, Zhang H. CG-DESCENT, a conjugate gradient method with guaranteed descent. ACM Transactions on Mathematical Software, 2006, 32(1): 113–137

Hager W W, Zhang H. A survey of nonlinear conjugate gradient methods. Pacific J Optim, 2006, 2: 35–58

Hestenes M R, Stiefel E L. Methods of conjugate gradients for solving linear systems. J Research Nat Bur Standards, 1952, 49: 409–436

Hu Y F, Storey C. Global convergence result for conjugate gradient methods. J Optim Theory Appl, 1991, 71: 399–405

Liu J K, Li S J. New hybrid conjugate gradient method for unconstrained optimization. Appl Math Comput, 2014, 245: 36–43

Liu Y, Storey C. Efficient generalized conjugate gradient algorithms, part 1: theory. JOTA, 1991, 69: 129–137

Liu G H, Han J Y, Yin H X. Global convergence of the Fletcher-Reeves algorithm with an inexact line search. Appl Math J Chinese Univ, Ser B, 1995, 10: 75–82

Polak E, Ribiére G. Note sur la convergence de méthodes de directions conjugués. Revue Fran¸caise d’Informatique et de Recherche Opérationnelle, 1969, 16: 35–43

Polyak B T. The conjugate gradient method in extreme problems. USSR Comp Math Math Phys, 1969, 9: 94–112

Powell M J D. Restart procedures of the conjugate gradient method. Math Program, 1977, 2: 241–254

Touati-Ahmed D, Storey C. Efficient hybrid conjugate gradient techniques. J Optim Theory Appl, 1990, 64: 379–397

Wolfe P. Convergence conditions for ascent methods. SIAM Review, 1969, 11: 226–235

Wolfe P. Convergence conditions for ascent methods. II: Some corrections. SIAM Review, 1969, 11: 226–235

Yang X, Luo Z, Dai X. A global convergence of LS-CD hybrid conjugate gradient method. Adv Numer Anal, 2013, 2013: Article ID 517452, 5 pages

Yuan Y, Stoer J. A subspace study on conjugate gradient algorithm. Z Angew Math Mech, 1995, 75: 69–77

Yuan G, Meng Z, Li Y. A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. J Optim Theory Appl, 2016, 168: 129–152

Yuan G, Wei Z, Li G. A modified Polak-Ribi`ere-Polyak conjugate gradient algorithm for nonsmooth convex programs. J Comput Appl Math, 2014, 255: 86–96

Yuan G, Wei Z, Lu X. Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line search. Appl Math Model, 2017, 47: 811–825

Yuan G, Wei Z, Zhao Q. A modified Polak-Ribiére-Polyak conjugate gradient algorithm for large-scale optimization problems. IIE Transactions, 2014, 46: 397–413

Yuan G, Zhang M. A three-terms Polak-Ribiére-Polyak conjugate gradient algorithm for large-scale nonlinear equations. J Comput Appl Math, 2015, 286: 186–195

Zoutendijk G. Nonlinear programming, computational methods// Abadie J, ed. Integer and Nonlinear Programming. Amsterdam: North-Holland, 1970: 37–86