New Hardy Spaces of Musielak–Orlicz Type and Boundedness of Sublinear Operators

Springer Science and Business Media LLC - Tập 78 Số 1 - Trang 115-150 - 2014
Luong Dang Ky1
1MAPMO - Mathématiques - Analyse, Probabilités, Modélisation - Orléans (Fédération Denis Poisson, Bâtiment de Mathématiques, B.P. 6759, 45067 Orléans cedex 2 - France)

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andersen, K.F., John, R.T.: Weighted inequalities for vector-valued maximal functions and singular integrals. Studia Math. 69(1), 19–31 (1980/1981)

Astala K., Iwaniec T., Koskela P., Martin G.: Mappings of BMO-bounded distortion. Math. Ann. 317, 703–726 (2000)

Birnbaum Z., Orlicz W.: Über die verallgemeinerung des begriffes der zueinander konjugierten potenzen. Studia Math. 3, 1–67 (1931)

Bonami A., Feuto J., Grellier S.: Endpoint for the div-curl lemma in Hardy spaces. Publ. Mat. 54(2), 341–358 (2010)

Bonami A., Grellier S.: Hankel operators and weak factorization for Hardy–Orlicz spaces. Colloq. Math. 118(1), 107–132 (2010)

Bonami A., Grellier S., Ky L.D.: Paraproducts and products of functions in $${BMO(\mathbb{R}^{n})}$$ B M O ( R n ) and $${H^1(\mathbb{R}^{n})}$$ H 1 ( R n ) through wavelets. J. Math. Pure Appl. 97, 230–241 (2012)

Bonami A., Iwaniec T., Jones P., Zinsmeister M.: On the product of functions in BMO and H 1. Ann. Inst. Fourier (Grenoble). 57(5), 1405–1439 (2007)

Bownik M.: Boundedness of operators on Hardy spaces via atomic decompositions. Proc. Am. Math. Soc. 133, 3535–3542 (2005)

Bownik M., Li B., Yang D., Zhou Y.: Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ. Math. J. 57(7), 3065–3100 (2008)

Bui H.Q.: Weighted Hardy spaces. Math. Nachr. 103, 45–62 (1981)

Bui, T.A., Cao, J., Ky, L.D., Yang, D., Yang, S.: Musielak–Orlicz–Hardy spaces associated with operators satisfying reinforced off-diagonal estimates. Anal. Geom. Metr. Spaces 1, 69–129

Cao J., Chang D.-C., Yang D., Yang S.: Weighted local Orlicz–Hardy spaces on domains and their applications in inhomogeneous Dirichlet and Neumann problems. Trans. Am. Math. Soc. 365, 4729–4809 (2013)

Cao J., Chang D.-C., Yang D., Yang S.: Boundedness of generalized Riesz transforms on Orlicz–Hardy spaces associated to operators. Integral Equ. Oper. Theory 76(2), 225–283 (2013)

Coifman R.R.: A real variable characterization of H p . Studia Math. 51, 269–274 (1974)

Coifman R.R., Lions P.-L., Meyer Y., Semmes P.: Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72, 247–286 (1993)

Cruz-Uribe, D., Wang, L.-A.D.: Variable Hardy spaces. arXiv:1211.6505

Diening L.: Maximal function on Musielak–Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129, 657–700 (2005)

Diening L., Hästö P., Roudenko S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256, 1731–1768 (2009)

Fefferman C., Stein E.M.: H p spaces of several variables. Acta Math. 129, 137–193 (1972)

Folland G.B., Stein E.M.: Hardy spaces on homogeneous groups. Princeton University Press, Princeton (1982)

García-Cuerva J.: Weighted H p spaces. Diss. Math. 162, 1–63 (1979)

García-Cueva J., Martell J.M.: Wavelet characterization of weighted spaces. J. Geom. Anal. 11, 241– (2001)

García-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics. North-Holland Mathematics Studies, vol. 116. North-Holland Publishing Co., Amsterdam (1985)

Greco L., Iwaniec T.: New inequalities for the Jacobian. Ann. Inst. Henri Poincare 11, 17–35 (1994)

Harboure E., Salinas O., Viviani B.: A look at $${BMO_{\varphi}(w)}$$ B M O φ ( w ) through Carleson measures. J. Fourier Anal. Appl. 13(3), 267–284 (2007)

Harboure E., Salinas O., Viviani B.: Wavelet expansions for $${BMO_{\rho}(w)}$$ B M O ρ ( w ) -functions. Math. Nachr. 281(12), 1747–1763 (2008)

Hou, S., Yang, D., Yang, S.: Lusin area function and molecular characterizations of Musielak–Orlicz Hardy spaces and their applications. arXiv:1201.1945

Iwaniec T., Onninen J.: H 1-estimates of Jacobians by subdeterminants. Math. Ann. 324, 341–358 (2002)

Iwaniec T., Sbordone C.: Weak minima of variational integrals. J. Reine Angew. Math. 454, 143–161 (1994)

Iwaniec T., Verde A.: On the operator $${\mathcal{L}(f) = f {\rm log} | f |}$$ L ( f ) = f log | f | . J. Funct. Anal. 169(2), 391–420 (1999)

Iwaniec T., Verde A.: A study of Jacobians in Hardy–Orlicz spaces. Proc. Roy. Soc. Edinb. Sect. A 129(3), 539–570 (1999)

Janson S.: Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math. J. 47(4), 959–982 (1980)

Jiang R., Yang D.: New Orlicz–Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258(4), 1167–1224 (2010)

Ky L.D.: Bilinear decompositions and commutators of singular integral operators. Trans. Am. Math. Soc. 365, 2931–2958 (2013)

Ky, L.D.: Endpoint estimates for commutators of singular integrals related to Schrödinger operators. arXiv:1203.6335

Latter R.H.: A characterization of $${H^p(\mathbb{R}^{n})}$$ H p ( R n ) in terms of atoms. Studia Math. 62, 93–101 (1978)

Lerner A.K.: Some remarks on the Hardy–Littlewood maximal function on variable L p spaces. Math. Z. 251(3), 509–521 (2005)

Liang Y., Huang J., Yang D.: New real-variable characterizations of Musielak–Orlicz Hardy spaces. J. Math. Anal. Appl. 395(1), 413–428 (2012)

Martínez S., Wolanski N.: A minimum problem with free boundary in Orlicz spaces. Adv. Math. 218, 1914–1971 (2008)

Meda S., Sjögren P., Vallarino M.: On the H 1-L 1 boundedness of operators. Proc. Am. Math. Soc. 136, 2921–2931 (2008)

Meda S., Sjögren P., Vallarino M.: Atomic decompositions and operators on Hardy spaces. Rev. Un. Mat. Argent. 50(2), 15–22 (2009)

Muckenhoupt, B., Wheeden, R.: Weighted bounded mean oscillation and the Hilbert transform. Studia Math. 54(3), 221–237 (1975/1976)

Muckenhoupt B., Wheeden R.: On the dual of weighted H 1 of the half-space. Studia Math. 63(1), 57–79 (1978)

Müller S.: Hardy space methods for nonlinear partial differential equations. Tatra Mt. Math. Publ. 4, 159–168 (1994)

Musielak J.: Orlicz spaces and modular spaces. Lecture Notes in Mathematics, vol. 1034. Springer, New York (1983)

Nakai E., Yabuta K.: Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc. Jpn 37(2), 207–218 (1985)

Nakai E., Sawano Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262(9), 3665–3748 (2012)

Orlicz W.: Über eine gewisse Klasse von Räumen vom typus B. Bull. Inst. Acad. Pol. Ser. A 8, 207–220 (1932)

Rochberg R., Weiss G.: Derivatives of analytic families of Banach spaces. Ann. Math. 118, 315–347 (1983)

Sawano Y.: Atomic decompositions of Hardy spaces with variable exponents and its application to bounded linear operators. Integral Equ. Oper. Theory 77(1), 123–148 (2013)

Serra C.F.: Molecular characterization of Hardy–Orlicz spaces. (English summary) Rev. Un. Mat. Argent. 40(1–2), 203–217 (1996)

Stein E.M., Weiss G.: On the theory of harmonic functions of several variables. I. The theory of H p -spaces. Acta Math. 103, 25–62 (1960)

Strömberg J.-O., Torchinsky A.: Weighted Hardy Spaces. Lecture Notes in Mathematics, vol. 1381. Springer, Berlin (1989)

Taibleson M.H., Weiss G.: The molecular characterization of certain Hardy spaces. Astérisque 77, 67–149 (1980)

Viviani B.E.: An atomic decomposition of the Predual of $${BMO(\rho)}$$ B M O ( ρ ) . Revista Matematica Iberoamericana 3, 401–425 (1987)

Yang D., Yang S.: Local Hardy spaces of Musielak–Orlicz type and their applications. Sci. China Math. 55(8), 1677–1720 (2012)

Yang, D., Yang, S.: Musielak–Orlicz Hardy spaces associated with operators and their applications. J. Geom. Anal. (2012). doi: 10.1007/s12220-012-9344-y . arXiv: 1201.5512

Yang D., Yang S.: Real-variable characterizations of Orlicz–Hardy spaces on strongly Lipschitz domains of $${\mathbb{R}^n}$$ R n . Rev. Mat. Iberoam. 29, 237–292 (2013)

Yang D., Zhou Y.: A boundedness criterion via atoms for linear operators in Hardy spaces. Constr. Approx. 29, 207–218 (2009)