New Asymptotic Results in Principal Component Analysis

Sankhya A - Tập 79 Số 2 - Trang 254-297 - 2017
Vladimir Koltchinskii1, Karim Lounici2,1
1School of Mathematics, Georgia Institute of Technology, Atlanta, USA
2CNRS, LJAD, Université Côte d’Azur, Nice, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson, T.W. (1963). Asymptotic theory for principal component analysis. Ann. Math. Statist. 34, 122–148.

Anderson, T.W. (2003). An introduction to multivariate statistical analysis, Wiley Series in Probability and Statistics. Wiley-Interscience, 3rd edn. Wiley, Hoboken, NJ.

Birnbaum,,A., Johnstone, I.M., Nadler, B. and Paul, D. (2013). Minimax bounds for sparse PCA with noisy high-dimensional data. Ann. Statist. 41, 1055–1084.

Blanchard, G., Bousquet, O. and Zwald, L. (2007). Statistical properties of kernel principal component analysis. Mach. Learn. 66, 259–294.

Bunea, F. and Xiao, L. (2015). On the sample covariance matrix estimator of reduced effective rank population matrices, with applications to fPCA. Bernoulli 21, 1200–1230.

Dauxois, J., Pousse, A. and Romain, Y. (1982). Asymptotic theory for the principal component analysis of a vector random function: some applications to statistical inference. J. Multivariate Anal. 12, 136–154.

Johnstone, I.M. and Lu, A.Y. (2009). On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc. 104, 682–693.

Kato, T. (1982). A short introduction to perturbation theory for linear operators. Springer, New York.

Koltchinskii, V. and Lounici, K. (2016). Asymtotics and concentration bounds for bilinear forms of spectral projectors of sample covariance. Ann. Inst. H. Poincaré Probab. Stat. 52, 1976–2013.

Koltchinskii, V. and Lounici, K. (2017a). Concentration inequalities and moment bounds for sample covariance operators. Bernoulli 23, 110–133. arXiv: 1405.2468 .

Koltchinskii, V. and Lounici, K. (2017b). Normal approximation and concentration of spectral projectors of sample covariance. Ann. Statist. 45, 121–157.

Lounici, K. (2013). Sparse principal component analysis with missing observations. High Dimensional Probability VI, Progress in Probability, Institute of Mathematical Statistics (IMS) Collections 66, 327–356.

Lounici, K. (2014). High-dimensional covariance matrix estimation with missing observations. Bernoulli 20, 1029–1058.

Ma, Z. (2013). Sparse principal component analysis and iterative thresholding. Ann. Statist. 41, 772–801.

Paul, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica 17, 1617–1642.

Paul, D. and Johnstone, I.M. (2012) Augmented sparse principal component analysis for high dimensional data. arXiv: 1202:1242 .

Ramsay, J.O. and Silverman, B.W. (1997). Functional Data Analysis. Springer, New York.

Schölkopf, B., Smola, A. and Müller, K. R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319.

Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Compressed sensing. Cambridge University Press, Cambridge, pp. 210–268. arXiv:1011.3027v7.

Vu, V. and Lei, J. (2012). Minimax rates of estimation for sparse PCA in high dimensions. JMLR 22, 1278–1286.