New Approaches to Biological Pacemakers: Links to Sinoatrial Node Development
Tài liệu tham khảo
Keith, 1907, The form and nature of the muscular connections between the primary divisions of the vertebrate heart, J. Anat. Physiol., 41, 172
Fedorov, 2010, Optical mapping of the isolated coronary-perfused human sinus node, J. Am. Coll. Cardiol., 56, 1386, 10.1016/j.jacc.2010.03.098
Mond, 2011, The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009 – a World Society of Arrhythmia's project, Pacing Clin. Electrophysiol., 34, 1013, 10.1111/j.1540-8159.2011.03150.x
Bleeker, 1980, Functional and morphological organization of the rabbit sinus node, Circ. Res., 46, 11, 10.1161/01.RES.46.1.11
Mangoni, 2008, Genesis and regulation of the heart automaticity, Physiol. Rev., 88, 919, 10.1152/physrev.00018.2007
Meyers, 2015, Reprogramming the conduction system: Onward toward a biological pacemaker, Trends Cardiovasc. Med.
Boink, 2015, The past, present, and future of pacemaker therapies, Trends Cardiovasc. Med., 10.1016/j.tcm.2015.02.005
Li, 2012, Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?, Gene Ther., 19, 588, 10.1038/gt.2012.33
Rosen, 2011, The road to biological pacing, Nat. Rev. Cardiol., 8, 656, 10.1038/nrcardio.2011.120
Groenke, 2013, Complete atrial-specific knockout of sodium–calcium exchange eliminates sinoatrial node pacemaker activity, PLoS ONE, 8, e81633, 10.1371/journal.pone.0081633
Mesirca, 2015, Functional role of voltage gated Ca(2+) channels in heart automaticity, Front. Physiol., 6, 19, 10.3389/fphys.2015.00019
Baruscotti, 2011, Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4, Proc. Natl. Acad. Sci. U.S.A., 108, 1705, 10.1073/pnas.1010122108
Lakatta, 2010, A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart's pacemaker, Circ. Res., 106, 659, 10.1161/CIRCRESAHA.109.206078
Garcia-Frigola, 2003, Expression of the hyperpolarization-activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development, Gene Expr. Patterns, 3, 777, 10.1016/S1567-133X(03)00125-X
Milanesi, 2006, Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel, N. Engl. J. Med., 354, 151, 10.1056/NEJMoa052475
Verheijck, 2001, Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution, Cardiovasc. Res., 52, 40, 10.1016/S0008-6363(01)00364-9
Morris, 2014, Fibrosis, electrics and genetics. Perspectives in sinoatrial node disease, Circ. J., 78, 1272, 10.1253/circj.CJ-14-0419
Bressan, 2013, Early mesodermal cues assign avian cardiac pacemaker fate potential in a tertiary heart field, Science, 340, 744, 10.1126/science.1232877
Mommersteeg, 2007, Molecular pathway for the localized formation of the sinoatrial node, Circ. Res., 100, 354, 10.1161/01.RES.0000258019.74591.b3
Viragh, 1980, The development of the conduction system in the mouse embryo heart, Dev. Biol., 80, 28, 10.1016/0012-1606(80)90496-0
Mommersteeg, 2010, The sinus venosus progenitors separate and diversify from the first and second heart fields early in development, Cardiovasc. Res., 87, 92, 10.1093/cvr/cvq033
Vedantham, 2015, RNA sequencing of mouse sinoatrial node reveals an upstream regulatory role for islet-1 in cardiac pacemaker cells, Circ. Res., 116, 797, 10.1161/CIRCRESAHA.116.305913
Wiese, 2009, Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3, Circ. Res., 104, 388, 10.1161/CIRCRESAHA.108.187062
Kapoor, 2011, Transcriptional suppression of connexin43 by TBX18 undermines cell-cell electrical coupling in postnatal cardiomyocytes, J. Biol. Chem., 286, 14073, 10.1074/jbc.M110.185298
Kapoor, 2013, Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18, Nat. Biotechnol., 31, 54, 10.1038/nbt.2465
Hoogaars, 2007, Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria, Genes Dev., 21, 1098, 10.1101/gad.416007
Frank, 2012, Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis, Proc. Natl. Acad. Sci. U.S.A., 109, E154, 10.1073/pnas.1115165109
Espinoza-Lewis, 2009, Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5, Dev. Biol., 327, 376, 10.1016/j.ydbio.2008.12.028
Blaschke, 2007, Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development, Circulation, 115, 1830, 10.1161/CIRCULATIONAHA.106.637819
Ye, 2015, A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaking cell fate in the pulmonary vein myocardium and sinoatrial node, Development, 142, 2521, 10.1242/dev.120220
Sun, 2015, The short stature homeobox 2 (Shox2)-bone morphogenetic protein (BMP) pathway regulates dorsal mesenchymal protrusion development and its temporary function as a pacemaker during cardiogenesis, J. Biol. Chem., 290, 2007, 10.1074/jbc.M114.619007
Cai, 2003, Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart, Dev. Cell, 5, 877, 10.1016/S1534-5807(03)00363-0
Weinberger, 2012, Localization of Islet-1-positive cells in the healthy and infarcted adult murine heart, Circ. Res., 110, 1303, 10.1161/CIRCRESAHA.111.259630
Liang, 2015, Transcription factor ISL1 is essential for pacemaker development and function, J. Clin. Invest., 125, 3256, 10.1172/JCI68257
Satin, 2004, Mechanism of spontaneous excitability in human embryonic stem cell derived cardiomyocytes, J. Physiol., 559, 479, 10.1113/jphysiol.2004.068213
Kehat, 2004, Electromechanical integration of cardiomyocytes derived from human embryonic stem cells, Nat. Biotechnol., 22, 1282, 10.1038/nbt1014
Vedantham, 2013, Spatiotemporal regulation of an Hcn4 enhancer defines a role for Mef2c and HDACs in cardiac electrical patterning, Dev. Biol., 373, 149, 10.1016/j.ydbio.2012.10.017
Morikawa, 2010, Identification, isolation and characterization of HCN4-positive pacemaking cells derived from murine embryonic stem cells during cardiac differentiation, Pacing Clin. Electrophysiol., 33, 290, 10.1111/j.1540-8159.2009.02614.x
Hashem, 2013, Genetic isolation of stem cell-derived pacemaker-nodal cardiac myocytes, Mol. Cell. Biochem., 383, 161, 10.1007/s11010-013-1764-x
Hashem, 2013, Shox2 regulates the pacemaker gene program in embryoid bodies, Stem Cells Dev., 22, 2915, 10.1089/scd.2013.0123
Scavone, 2013, Embryonic stem cell-derived CD166+ precursors develop into fully functional sinoatrial-like cells, Circ. Res., 113, 389, 10.1161/CIRCRESAHA.113.301283
Ieda, 2010, Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors, Cell, 142, 375, 10.1016/j.cell.2010.07.002
Qian, 2012, In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes, Nature, 485, 593, 10.1038/nature11044
Song, 2012, Heart repair by reprogramming non-myocytes with cardiac transcription factors, Nature, 485, 599, 10.1038/nature11139
Bakker, 2012, T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells, Cardiovasc. Res., 94, 439, 10.1093/cvr/cvs120
Jung, 2014, Programming and isolation of highly pure physiologically and pharmacologically functional sinus-nodal bodies from pluripotent stem cells, Stem Cell Rep., 2, 592, 10.1016/j.stemcr.2014.03.006
Ionta, 2015, SHOX2 overexpression favors differentiation of embryonic stem cells into cardiac pacemaker cells, improving biological pacing ability, Stem Cell Rep., 4, 129, 10.1016/j.stemcr.2014.11.004
Hu, 2014, Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block, Sci. Transl. Med., 6, 245ra94, 10.1126/scitranslmed.3008681
Laugwitz, 2005, Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages, Nature, 433, 647, 10.1038/nature03215
Moretti, 2006, Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification, Cell, 127, 1151, 10.1016/j.cell.2006.10.029
Dorn, 2015, Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity, Stem Cells, 33, 1113, 10.1002/stem.1923
Nam, 2014, Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors, Development, 141, 4267, 10.1242/dev.114025
Takahashi, 2006, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663, 10.1016/j.cell.2006.07.024
Takahashi, 2007, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, 131, 861, 10.1016/j.cell.2007.11.019
Yasui, 2001, I(f) current and spontaneous activity in mouse embryonic ventricular myocytes, Circ. Res., 88, 536, 10.1161/01.RES.88.5.536
Udo, 2013, Long term quality-of-life in patients with bradycardia pacemaker implantation, Int. J. Cardiol., 168, 2159, 10.1016/j.ijcard.2013.01.253
Wilhelm, 2015, Complications and risk assessment of 25 years in pediatric pacing, Ann. Thorac. Surg., 100, 147, 10.1016/j.athoracsur.2014.12.098
Ye, 2015, A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node, Development, 142, 2521, 10.1242/dev.120220
Fu, 2013, Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state, Stem Cell Rep., 1, 235, 10.1016/j.stemcr.2013.07.005
Rentschler, 2012, Myocardial Notch signaling reprograms cardiomyocytes to a conduction-like phenotype, Circulation, 126, 1058, 10.1161/CIRCULATIONAHA.112.103390
Tsai, 2015, Efficient generation of cardiac Purkinje cells from ESCs by activating cAMP signaling, Stem Cell Rep., 4, 1089, 10.1016/j.stemcr.2015.04.015
Maass, 2015, Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells, Stem Cells, 33, 1102, 10.1002/stem.1921
Hirata, 2006, ALCAM (CD166) is a surface marker for early murine cardiomyocytes, Cells Tissues Organs, 184, 172, 10.1159/000099624