Những Tiến Bộ Mới Trong Phương Pháp Ngựa Thành Troy Như Một Cách Tiếp Cận Gián Tiếp Đối Với Vật Lý Hạt Nhân Thiên Văn

Few-Body Systems - Tập 54 - Trang 745-753 - 2012
A. Tumino1,2, C. Spitaleri1,3, S. Cherubini4,3, M. Gulino1,2, M. La Cognata1, L. Lamia1,3, R. G. Pizzone1, S. M. R. Puglia1,3, G. G. Rapisarda1,3, S. Romano1,3, M. L. Sergi1,3, R. Spartà1,3
1Laboratori Nazionali del Sud, INFN, Catania, Italy
2Università degli Studi di Enna “Kore”, Enna, Italy
3Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy
4Laboratori Nazionali del Sud - INFN, Catania, Italy

Tóm tắt

Với sự ra đời của Phương Pháp Ngựa Thành Troy, các mặt cắt hạt nhân giữa các hạt mang điện ở các năng lượng thiên văn giờ đây có thể được đo. Tại đây, các đặc điểm cơ bản của phương pháp này được nhắc lại cùng với các kết quả gần đây có liên quan đến Vật Lý Hạt Nhân Thiên Văn. Những ứng dụng mới liên quan đến vật lý plasma và sản xuất năng lượng công nghiệp cũng được bàn luận.

Từ khóa

#nuclear astrophysics #Trojan Horse Method #charged particles #plasma physics #energy production

Tài liệu tham khảo

Assenbaum H., Langanke K.L., Rolfs C.: Effects of electron screening on low-energy fusion cross sections. Z. Phys. A 327, 461 (1987) Baur G.: Breakup reactions as an indirect method to investigate low-energy charged-particle reactions relevant for nuclear astrophysics. Phys. Lett. B 178, 135 (1986) Cherubini S. et al.: Indirect investigation of the d + 6Li reaction at low energies relevant for nuclear astrophysics. Astrophys. J. 457, 855 (1996) Spitaleri C. et al.: Indirect 7Li(p,α)4He reaction at astrophysical energies. Phys. Rev. C 60, 055802 (1999) Typel S., Wolter H.: Extraction of astrophysical cross sections in the Trojan-horse method. Few Body Syst. 29, 7 (2000) Typel S., Baur G.: Theory of the Trojan-Horse method. Ann. Phys. 305, 228 (2003) Mukamedzhanov A.M. et al.: Trojan Horse as an indirect technique in nuclear astrophysics. J.Phys. G Nucl. Part. Phys. 35, 014016 (2008) Tumino A. et al.: Off-energy-shell p–p scattering at sub-Coulomb energies via the Trojan horse method. Phys. Rev. C 68, 064001 (2008) Chew G.F., Wick G.C.: The impulse approximation. Phys. Rev. 85, 636 (1952) Chant N.S., Roos P.G.: Distorted-wave impulse-approximation calculations for quasifree cluster knockout reactions. Phys. Rev. C 15, 57 (1977) Slaus I. et al.: Quasifree processes in the 2H + 3He →α + n interaction. Nucl. Phys. A 286, 67 (1977) Kasagi J. et al.: Quasifree 5He + 3He→ α + α reaction process in the 9 Be(3He, α α)4He reaction at E(3He) = 4.0 MeV. Nucl. Phys. A 239, 233 (1975) Arena N. et al.: Energy dependence of the quasi-free 9Be(3He, α α)4He reaction near the coulomb barrier. Nuovo Cimento Soc. Ital. Fis. A 45, 405 (1978) Lattuada M. et al.: Investigation of the reaction mechanisms in the11B+p→3α Reaction at 20 MeV. Nuovo Cimento Soc. Ital. Fis. A 62, 165 (1981) Lattuada M. et al.: Quasi-free effects in the 9Be(p, dα)4He reaction at 30 MeV. Nuovo Cimento Soc. Ital. Fis. A 69, 1 (1982) Lattuada M. et al.: The quasi-free 9Be(3He, α α)4He reaction between 3 and 12 MeV. Nucl. Phys. A 458, 493 (1986) Zadro M. et al.: Quasi-free processes in 6Li(3He, pα)4He reaction at low energies. Nucl. Phys. A 474, 373 (1987) Zadro M. et al.: Excitation function of the quasifree contribution in the 2H(7Li)n reaction at E0 = 28.48 MeV. Phys. Rev. C 40, 181 (1989) Blagus S. et al.: Quasifree processes in the 3H+2H→d+d+n reaction. Z. Phys. A337, 297 (1990) Calvi G. et al.: Quasifree reaction mechanism in 2H(6Li,3He)n at E0 = 21.6−33.6 MeV. Phys. Rev. C 41, 1848 (1990) Mukhamedzhanov A.M. et al.: Indirect techniques in nuclear astrophysics asymptotic normalization coefficient and trojan horse. Eur. Phys. J. A 27, 205 (2006) Tumino A. et al.: Quasi-free 6Li(n,α)3H reaction at low energy from 2H break-up. Eur. Phys. J. A 25, 649 (2005) Tumino A. et al.: Suppression of the Coulomb interaction in the off-energy-shell p-p scattering from the p + d→ p + p + n reaction. Phys. Rev. Lett. 98, 252502 (2007) Tumino A. et al.: Validity test of the “trojan horse” method applied to the 6Li(p,α)3He reaction. Phys. Rev. C 67, 065803 (2003) La Cognata M. et al.: Measurement of the 20 and 90 keV Resonances in the 18O(p,α)15N Reaction via the Trojan Horse Method. Phys. Rev. Lett. 10, 152501 (2008) Spitaleri C. et al.: The α-12C scattering studied via the Trojan-Horse method. Eur. Phys. J. A 7, 181 (2000) Lattuada M. et al.: The bare astrophysical S(E) factor of the 7Li(p,α)α reaction. Astrophys. J. 562, 1076 (2001) Spitaleri C. et al.: “Trojan horse” method applied to 2H(6Li,α)4He at astrophysical energies. Phys. Rev. C 63, 005801 (2001) Musumarra A. et al.: Improved information on the 2H(6Li,α)4He reaction extracted via the “Trojan horse” method. Phys. Rev. C 64, 068801 (2001) Pizzone R.G. et al.: Proton-induced lithium destruction cross-section and its astrophysical implications. A. A. 398, 423–427 (2003) Pizzone R.G., Tumino A. et al.: Trojan Horse estimate of bare nucleus astrophysical S(E)-factor for the 6Li(p,α)3He reaction and its astrophysical implications. A. A. 438, 779–784 (2005) Tumino, A., et al.: Validity test of the Trojan Horse Method applied to the7Li + p→α +α reaction via the 3He break-up. Eur. Phys. J. A Direct (2006). doi:10.11140/epja/i2006-08-038-1 Lamia L. et al.: Boron depletion: indirect measurement of the 10B(p,α)7Be S(E)-factor. Nucl. Phys. A 787, 309C (2007) Spitaleri C. et al.: The 11B(p, α 0)8Be reaction at sub-Coulomb energies via the Trojan-horse method. Phys. Rev. C 69, 055806 (2004) La Cognata M. et al.: Bare-nucleus astrophysical factor of the 3He(d,p)4He reaction via the “trojan horse” method. Phys. Rev. C 72, 065802 (2005) Rinollo A. et al.: Measurement of cross section and astrophysical factor of the 2H(d,p)3H reaction using the Trojan Horse Method. Nucl. Phys. A 758, 146 (2005) La Cognata M. et al.: Astrophysical S(E) factor of the 15N(p,α)12C reaction at sub-Coulomb energies via the Trojan horse method. Phys. Rev. C 76, 065804 (2007) Wen Q. et al.: Trojan horse method applied to 9Be(p,α)6Li at astrophysical energies. Phys. Rev. C 78, 035805 (2008) Lamia L. et al.: Indirect study of (p, α) and (n, α) reactions induced on boron isotopes. Il Nuovo Cimento 31, 423 (2009) La Cognata M. et al.: A novel approach to measure the cross section of the 18O(p, α)15N resonant reaction in the 0-200 keV energy range. Astrophys. J. Lett. 708, 796 (2010) Sergi M.L. et al.: Indirect measurement of 17O(p,α)14N cross section at ultra-low energies. Phys. Rev. C 82, 032801(R) (2010) Gulino M. et al.: Study of the 6Li(n, α) 3H reaction via the 2H quasi-free break-up. J. Phys. G Nucl. Part. Phys. 37, 125105 (2010) Tumino, A., et al.: Low-energy d + d fusion reactions via the Trojan Horse Method. Phys. Lett. B 700, 111 and Erratum to Low-energy d + d fusion reactions via the Trojan Horse Method [Phys. Lett. B 700 (2) (2011) 111 Tumino A. et al.: Phys. Lett. B 705(5), 546 (2011) Krauss A. et al.: Low-energy fusion cross sections of D + D and D + 3He reactions. Nucl. Phys. A 465, 150 (1987) Brown R.E., Jarmie N.: Differential cross sections at low energies for 2H(d,p)3H and 2H(d,n)3He. Phys. Rev. C 41, 1391 (1990) Greife U. et al.: Oppenheimer–Phillips effect and electron screening in d + d fusion reactions. Z. Phys. A 351, 107 (1995) The First Res. Group (1985) Low energy cross section measurement of d−d and d−t reactions. Chin. J. Nucl. Phys. 9, 723 Schulte R.L. et al.: 2H + 2H reactions from 1.96 to 6.20 MeV. Nucl. Phys. A 192, 609 (1972) Leonard D.S. et al.: Precision measurements of 2H(d,p)3H and 2H(d,n)3He total cross sections at big bang nucleosynthesis energies. Phys. Rev. C 73, 045801 (2006) Angulo C. et al.: A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 656, 3 (1999) Cyburt R.H.: Primordial nucleosynthesis for the new cosmology: Determining uncertainties and examining concordance. Phys. Rev. D 70, 023505 (2004) Descouvemont P. et al.: Compilation and R-matrix analysis of Big Bang nuclear reaction rates. At. Data Nucl. Data Tab. 88, 203 (2004) Busso M. et al.: Nucleosynthesis in asymptotic giant branch stars: Relevance for galactic enrichment and solar system formation. A. A. 37, 239 (1999) Jorissen A. et al.: Fluorine in red giant stars: evidence for nucleosynthesis. Astron. Astrophys. 261, 164 (1992) Lugaro M. et al.: Reaction rate uncertainties and the production of 19F in asymptotic giant branch stars. Astrophys. J. 615, 934 (2004) Muckamedzhanov A. et al.: Unitary correlation in nuclear reaction theory: Separation of nuclear reactions and spectroscopic factors. Phys. Rev. C 82, 051601 (2010) Tilley D.R. et al.: Energy levels of light nuclei A = 18−19. Nucl. Phys. A 595, 1 (1995) Angulo C. et al.: The effects of electron screening and resonances in (p, α) reactions on10B and11B at thermal energies. Z. Phys. A 345, 231 (1993) Becker, H.W., et al. Low-energy cross sections for 11B(p, 3α). 327, 341 (1987)