Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus

Springer Science and Business Media LLC - Tập 371 - Trang 489-503 - 2017
Megan L. Lewis1, Bas G. J. Surewaard2,3
1Department of Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
2Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
3Department of Medical Microbiology, University Medical Centre, Utrecht, Netherlands

Tóm tắt

Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

Tài liệu tham khảo

Abeyta M, Hardy GG, Yother J (2003) Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus Pneumoniae. Infect Immun 71:218–225 Agarwal V, Talens S, Grandits AM, Blom AM (2015) A novel interaction between complement inhibitor C4b-binding protein and Plasminogen that enhances Plasminogen activation. J Biol Chem 290:18333–18342 Akong-Moore K, Chow OA, von Köckritz-Blickwede M, Nizet V (2012) Influences of chloride and hypochlorite on Neutrophil extracellular trap formation. PLoS ONE 7:e42984 Alexander JE, Lock RA, Peeters CC, Poolman JT, Andrew PW, Mitchell TJ, Hansman D, Paton JC (1994) Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus Pneumoniae. Infect Immun 62:5683–5688 Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489 Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML, Leite LCC, Darrieux M (2017) Role of Streptococcus Pneumoniae proteins in evasion of complement-mediated immunity. Front Microbiol 8:224 Babior BM (1999) NADPH oxidase: An update. Blood 93:1464–1476 Bagnoli F, Bertholet S, Grandi G (2012) Inferring reasons for the failure of Staphylococcus Aureus vaccines in clinical trials. Front Cell Infect Microbiol 2:16 Bardoel BW, Hartsink D, Vughs MM, de Haas CJ, van Strijp JA, van Kessel KP (2012) Identification of an immunomodulating metalloprotease of Pseudomonas Aeruginosa (IMPa). Cell Microbiol 14:902–913 Barlow M (2009) What antimicrobial resistance has taught us about horizontal gene transfer. Methods Mol Biol 532:397–411 Barrett FF, McGehee RF Jr, Finland M (1968) Methicillin-resistant Staphylococcus Aureus at Boston City Hospital. Bacteriologic and epidemiologic observations. N Engl J Med 279:441–448 Baur S, Rautenberg M, Faulstich M, Grau T, Severin Y, Unger C, Hoffmann WH, Rudel T, Autenrieth IB, Weidenmaier C (2014) A nasal epithelial receptor for Staphylococcus Aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog 10:e1004089 Beavers WN, Skaar EP (2016) Neutrophil-generated oxidative stress and protein damage in Staphylococcus Aureus. Pathog Dis 74:ftw060 Bera A, Herbert S, Jakob A, Vollmer W, Gotz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus Aureus. Mol Microbiol 55:778–787 Bergmann S, Hammerschmidt S (2006) Versatility of pneumococcal surface proteins. Microbiology 152:295–303 Bestebroer J, Poppelier MJ, Ulfman LH, Lenting PJ, Denis CV, van Kessel KP, van Strijp JA, de Haas CJ (2007) Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood 109:2936–2943 Bestebroer J, De Haas CJ, Van Strijp JA (2010a) How microorganisms avoid phagocyte attraction. FEMS Microbiol Rev 34:395–414 Bestebroer J, Aerts PC, Rooijakkers SH, Pandey MK, Kohl J, van Strijp JA, de Haas CJ (2010b) Functional basis for complement evasion by staphylococcal superantigen-like 7. Cell Microbiol 12:1506–1516 Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, Bassani DG, Jha P, Campbell H, Walker CF, Cibulskis R, Eisele T, Liu L, Mathers C (2010) Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet 375:1969–1987 Black S, Shinefield H, Fireman B, Lewis E, Ray P, Hansen JR, Elvin L, Ensor KM, Hackell J, Siber G, Malinoski F, Madore D, Chang I, Kohberger R, Watson W, Austrian R, Edwards K (2000) Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente vaccine study center group. Pediatr Infect Dis J 19:187–195 Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R, Rumke HC, Verbrugh HA, Hermans PW (2004) Colonisation by Streptococcus Pneumoniae and Staphylococcus Aureus in healthy children. Lancet 363:1871–1872 Bogomolski-Yahalom V, Matzner Y (1995) Disorders of neutrophil function. Blood Rev 9:183–190 Boxer LA, Morganroth ML (1987) Neutrophil function disorders. Dis Mon 33:681–780 Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535 Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, Schneewind O (2007) Poring over pores: alpha-hemolysin and Panton-valentine leukocidin in Staphylococcus Aureus pneumonia. Nat Med 13:1405–1406 Bubeck Wardenburg J, Palazzolo-Ballance AM, Otto M, Schneewind O, DeLeo FR (2008) Panton-valentine leukocidin is not a virulence determinant in murine models of community-associated methicillin-resistant Staphylococcus Aureus disease. J Infect Dis 198:1166–1170 Chambers HF, DeLeo FR (2009) Waves of resistance: Staphylococcus Aureus in the antibiotic era. Nat Rev Microbiol 7:629–641 Charpentier E, Tuomanen E (2000) Mechanisms of antibiotic resistance and tolerance in Streptococcus Pneumoniae. Microbes Infect 2:1855–1864 Cogen AL, Yamasaki K, Sanchez KM, Dorschner RA, Lai Y, MacLeod DT, Torpey JW, Otto M, Nizet V, Kim JE, Gallo RL (2010) Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus Epidermidis, a normal resident of the skin. J Investig Dermatol 130:192–200 Coronado F, Nicholas JA, Wallace BJ, Kohlerschmidt DJ, Musser K, Schoonmaker-Bopp DJ, Zimmerman SM, Boller AR, Jernigan DB, Kacica MA (2007) Community-associated methicillin-resistant Staphylococcus Aureus skin infections in a religious community. Epidemiol Infect 135:492–501 Cremers AJ, Zomer AL, Gritzfeld JF, Ferwerda G, van Hijum SA, Ferreira DM, Shak JR, Klugman KP, Boekhorst J, Timmerman HM, de Jonge MI, Gordon SB, Hermans PW (2014) The adult nasopharyngeal microbiome as a determinant of pneumococcal acquisition. Microbiome 2:44 de Jong NWM, Ramyar KX, Guerra FE, Nijland R, Fevre C, Voyich JM, McCarthy AJ, Garcia BL, van Kessel KPM, van Strijp JAG, Geisbrecht BV, Haas P-JA (2017) Immune evasion by a staphylococcal inhibitor of myeloperoxidase. Proc Natl Acad Sci U S A 114:9439–9444 de Leeuw E, Li C, Zeng P, Diepeveen-de Buin M, Lu WY, Breukink E, Lu W (2010) Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett 584:1543–1548 Deleo FR, Otto M, Kreiswirth BN, Chambers HF (2010) Community-associated meticillin-resistant Staphylococcus Aureus. Lancet 375:1557–1568 Deniset JF, Surewaard BG, Lee WY, Kubes P (2017) Splenic Ly6Ghigh mature and Ly6Gint immature neutrophils contribute to eradication of S. Pneumoniae. J Exp Med 214:1333–1350 Di Sabatino A, Carsetti R, Corazza GR (2011) Post-splenectomy and hyposplenic states. Lancet 378:86–97 Diamond MS, Staunton DE, de Fougerolles AR, Stacker SA, Garcia-Aguilar J, Hibbs ML, Springer TA (1990) ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol 111:3129–3139 DuMont AL, Yoong P, Day CJ, Alonzo F 3rd, McDonald WH, Jennings MP, Torres VJ (2013) Staphylococcus Aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc Natl Acad Sci U S A 110:10794–10799 Fontanilla JM, Kirkland KB, Talbot EA, Powell KE, Schwartzman JD, Goering RV, Parsonnet J (2010) Outbreak of skin infections in college football team members due to an unusual strain of community-acquired methicillin-susceptible Staphylococcus Aureus. J Clin Microbiol 48:609–611 Francis A III, Lina K, Stephen AR, Tamara R-R, Ashley LD, David GM, Nathaniel RL, Derya U, Victor JT (2012) CCR5 is a receptor for Staphylococcus Aureus leukotoxin ED. Nature 493:51–55 Ganz T, Metcalf JA, Gallin JI, Boxer LA, Lehrer RI (1988) Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and "specific" granule deficiency. J Clin Invest 82:552–556 Geiger T, Francois P, Liebeke M, Fraunholz M, Goerke C, Krismer B, Schrenzel J, Lalk M, Wolz C (2012) The stringent response of Staphylococcus aureus and its impact on survival after Phagocytosis through the induction of intracellular PSMs expression. PLoS Pathog 8:e1003016 Gresham HD, Lowrance JH, Caver TE, Wilson BS, Cheung AL, Lindberg FP (2000) Survival of Staphylococcus Aureus inside neutrophils contributes to infection. J Immunol 164:3713–3722 Hajjar AM, O’Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB (2001) Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble Modulin. J Immunol 166:15–19 Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Müller E, Rohde M (2005) Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 73:4653–4667 Hammitt LL, Bruden DL, Butler JC, Baggett HC, Hurlburt DA, Reasonover A, Hennessy TW (2006) Indirect effect of conjugate vaccine on adult carriage of Streptococcus Pneumoniae: an explanation of trends in invasive pneumococcal disease. J Infect Dis 193:1487–1494 Haupt K, Reuter M, van den Elsen J, Burman J, Hälbich S, Richter J, Skerka C, Zipfel PF (2008) The Staphylococcus aureus protein Sbi acts as a complement inhibitor and forms a tripartite complex with host complement factor H and C3b. PLoS Pathog 4:e1000250 Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Götz F (2007) Molecular basis of resistance to Muramidase and cationic antimicrobial peptide activity of Lysozyme in staphylococci. PLoS Pathog 3:e102 Hergott CB, Roche AM, Naidu NA, Mesaros C, Blair IA, Weiser JN (2015) Bacterial exploitation of phosphorylcholine mimicry suppresses inflammation to promote airway infection. J Clin Invest 125:3878–3890 Hostetter MK (1986) Serotypic variations among virulent pneumococci in deposition and degradation of covalently bound C3b: implications for phagocytosis and antibody production. J Infect Dis 153:682–693 Hussain M, Melegaro A, Pebody RG, George R, Edmunds WJ, Talukdar R, Martin SA, Efstratiou A, Miller E (2005) A longitudinal household study of Streptococcus Pneumoniae nasopharyngeal carriage in a UK setting. Epidemiol Infect 133:891–898 Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y, Bubeck Wardenburg J (2011) A Staphylococcus Aureus Pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17:1310–1314 Jongerius I, Garcia BL, Geisbrecht BV, van Strijp JA, Rooijakkers SH (2010) Convertase inhibitory properties of staphylococcal extracellular complement-binding protein. J Biol Chem 285:14973–14979 Jongerius I, von Kockritz-Blickwede M, Horsburgh MJ, Ruyken M, Nizet V, Rooijakkers SH (2012) Staphylococcus Aureus virulence is enhanced by secreted factors that block innate immune defenses. J Innate Immun 4:301–311 Kadioglu A, Taylor S, Iannelli F, Pozzi G, Mitchell TJ, Andrew PW (2002) Upper and lower respiratory tract infection by Streptococcus Pneumoniae is affected by pneumolysin deficiency and differences in capsule type. Infect Immun 70:2886–2890 Kadioglu A, Weiser JN, Paton JC, Andrew PW (2008) The role of Streptococcus Pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288–301 Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384 Kim HK, Cheng AG, Kim H-Y, Missiakas DM, Schneewind O (2010) Nontoxigenic protein a vaccine for methicillin-resistant Staphylococcus Aureus infections in mice. J Exp Med 207:1863–1870 Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9:781–795 Klevens RM, Edwards JR, Tenover FC, McDonald LC, Horan T, Gaynes R (2006) Changes in the epidemiology of methicillin-resistant Staphylococcus Aureus in intensive care units in US hospitals, 1992-2003. Clin Infect Dis 42:389–391 Ko YP, Kuipers A, Freitag CM, Jongerius I, Medina E, van Rooijen WJ, Spaan AN, van Kessel KP, Hook M, Rooijakkers SH (2013) Phagocytosis escape by a Staphylococcus Aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog 9:e1003816 Koppe U, Suttorp N, Opitz B (2012) Recognition of Streptococcus Pneumoniae by the innate immune system. Cell Microbiol 14:460–466 Koziel J, Maciag-Gudowska A, Mikolajczyk T, Bzowska M, Sturdevant DE, Whitney AR, Shaw LN, DeLeo FR, Potempa J (2009) Phagocytosis of Staphylococcus Aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS ONE 4:e5210 Kretschmer D, Gleske AK, Rautenberg M, Wang R, Koberle M, Bohn E, Schoneberg T, Rabiet MJ, Boulay F, Klebanoff SJ, van Kessel KA, van Strijp JA, Otto M, Peschel A (2010) Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus Aureus. Cell Host Microbe 7:463–473 Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SH (2011) Staphylococcus Aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol 186:6445–6453 Langley R, Wines B, Willoughby N, Basu I, Proft T, Fraser JD (2005) The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc alpha RI binding and serum killing of bacteria. J Immunol 174:2926–2933 Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O (2013) Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13:1057–1098 Le Y, Oppenheim JJ, Wang JM (2001) Pleiotropic roles of formyl peptide receptors. Cytokine Growth Factor Rev 12:91–105 Lehar SM, Pillow T, Xu M, Staben L, Kajihara KK, Vandlen R, DePalatis L, Raab H, Hazenbos WL, Hiroshi Morisaki J, Kim J, Park S, Darwish M, Lee B-C, Hernandez H, Loyet KM, Lupardus P, Fong R, Yan D, Chalouni C, Luis E, Khalfin Y, Plise E, Cheong J, Lyssikatos JP, Strandh M, Koefoed K, Andersen PS, Flygare JA, Wah Tan M, Brown EJ, Mariathasan S (2015) Novel antibody–antibiotic conjugate eliminates intracellular S. Aureus. Nature 527:323–328 Li M, Diep BA, Villaruz AE, Braughton KR, Jiang X, DeLeo FR, Chambers HF, Lu Y, Otto M (2009) Evolution of virulence in epidemic community-associated methicillin-resistant Staphylococcus Aureus. Proc Natl Acad Sci U S A 106:5883–5888 Loffler B, Hussain M, Grundmeier M, Bruck M, Holzinger D, Varga G, Roth J, Kahl BC, Proctor RA, Peters G (2010) Staphylococcus Aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils. PLoS Pathog 6:e1000715 Mac LC, Kraus MR (1950) Relation of virulence of pneumococcal strains for mice to the quantity of capsular polysaccharide formed in vitro. J Exp Med 92:1–9 Macedo-Ramos H, Campos FS, Carvalho LA, Ramos IB, Teixeira LM, De Souza W, Cavalcante LA, Baetas-da-Cruz W (2011) Olfactory ensheathing cells as putative host cells for Streptococcus Pneumoniae: evidence of bacterial invasion via mannose receptor-mediated endocytosis. Neurosci Res 69:308–313 Macedo-Ramos H, Ruiz-Mendoza S, Mariante RM, Guimaraes EV, Quadros-de-Souza LC, Paiva MM, Ferreira EO, Pinto TC, Teixeira LM, Allodi S, Baetas-da-Cruz W (2016) Streptococcus Pneumoniae resists intracellular killing by olfactory ensheathing cells but not by microglia. Sci Rep 6:36813 Majchrzykiewicz JA, Kuipers OP, Bijlsma JJ (2010) Generic and specific adaptive responses of Streptococcus Pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin. Antimicrob Agents Chemother 54:440–451 Malachowa N, Whitney AR, Kobayashi SD, Sturdevant DE, Kennedy AD, Braughton KR, Shabb DW, Diep BA, Chambers HF, Otto M, DeLeo FR (2011) Global changes in Staphylococcus Aureus gene expression in human blood. PLoS ONE 6:e18617 Malley R, Henneke P, Morse SC, Cieslewicz MJ, Lipsitch M, Thompson CM, Kurt-Jones E, Paton JC, Wessels MR, Golenbock DT (2003) Recognition of pneumolysin by toll-like receptor 4 confers resistance to pneumococcal infection. Proc Natl Acad Sci U S A 100:1966–1971 McDonald B, McAvoy EF, Lam F, Gill V, de la Motte C, Savani RC, Kubes P (2008) Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids. J Exp Med 205:915–927 McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P (2012) Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12:324–333 McGuinness WA, Kobayashi SD, DeLeo FR (2016) Evasion of Neutrophil killing by Staphylococcus Aureus. Pathogens 5:32 McGuinness WA, Malachowa N, DeLeo FR (2017) Vancomycin resistance in Staphylococcus Aureus. Yale J Biol Med 90:269–281 Miller E, Andrews NJ, Waight PA, Slack MP, George RC (2011) Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. Lancet Infect Dis 11:760–768 Mohan S, Hertweck C, Dudda A, Hammerschmidt S, Skerka C, Hallstrom T, Zipfel PF (2014) Tuf of Streptococcus Pneumoniae is a surface displayed human complement regulator binding protein. Mol Immunol 62:249–264 Moore KL, Patel KD, Bruehl RE, Fugang L, Johnson DA, Lichenstein HS, Cummings RD, Bainton DF, McEver RP (1995) P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 128:661–671 Mullaly SC, Kubes P (2006) The role of TLR2 in vivo following challenge with Staphylococcus Aureus and prototypic ligands. J Immunol 177:8154–8163 Musher DM (2003) How contagious are common respiratory tract infections? N Engl J Med 348:1256–1266 Orihuela CJ, Gao G, Francis KP, Yu J, Tuomanen EI (2004) Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J Infect Dis 190:1661–1669 Pauli NT, Kim HK, Falugi F, Huang M, Dulac J, Henry Dunand C, Zheng NY, Kaur K, Andrews SF, Huang Y, DeDent A, Frank KM, Charnot-Katsikas A, Schneewind O, Wilson PC (2014) Staphylococcus Aureus infection induces protein A-mediated immune evasion in humans. J Exp Med 211:2331–2339 Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus Aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410 Phillipson M, Kubes P (2011) The neutrophil in vascular inflammation. Nat Med 17:1381–1390 Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P (2006) Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med 203:2569–2575 Poland GA (1999) The burden of pneumococcal disease: the role of conjugate vaccines. Vaccine 17:1674–1679 Poulsen K, Reinholdt J, Kilian M (1996) Characterization of the Streptococcus Pneumoniae immunoglobulin A1 protease gene (iga) and its translation product. Infect Immun 64:3957–3966 Powers ME, Becker RE, Sailer A, Turner JR, Bubeck Wardenburg J (2015) Synergistic action of Staphylococcus Aureus Alpha-toxin on platelets and myeloid lineage cells contributes to lethal sepsis. Cell Host Microbe 17:775–787 Queck SY, Jameson-Lee M, Villaruz AE, Bach TH, Khan BA, Sturdevant DE, Ricklefs SM, Li M, Otto M (2008) RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus Aureus. Mol Cell 32:150–158 Ramos-Sevillano E, Urzainqui A, de Andres B, Gonzalez-Tajuelo R, Domenech M, Gonzalez-Camacho F, Sanchez-Madrid F, Brown JS, Garcia E, Yuste J (2016) PSGL-1 on leukocytes is a critical component of the host immune response against invasive pneumococcal disease. PLoS Pathog 12:e1005500 Regev-Yochay G, Dagan R, Raz M et al (2004) Association between carriage of streptococcus pneumoniae and staphylococcus aureus in children. JAMA 292:716–720 Regev-Yochay G, Trzcinski K, Thompson CM, Lipsitch M, Malley R (2007) SpxB is a suicide gene of Streptococcus Pneumoniae and confers a selective advantage in an in vivo competitive colonization model. J Bacteriol 189:6532–6539 Reiss-Mandel A, Regev-Yochay G (2016) Staphylococcus Aureus and Streptococcus Pneumoniae interaction and response to pneumococcal vaccination: myth or reality? Hum Vaccin Immunother 12:351–357 Reyes-Robles T, Alonzo F 3rd, Kozhaya L, Lacy DB, Unutmaz D, Torres VJ (2013) Staphylococcus Aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14:453–459 Rigby KM, DeLeo FR (2012) Neutrophils in innate host defense against Staphylococcus Aureus infections. Semin Immunopathol 34:237–259 Rogers DE (1956) Studies on bacteriemia. I. Mechanisms relating to the persistence of bacteriemia in rabbits following the intravenous injection of staphylococci. J Exp Med 103:713–742 Rooijakkers SH, van Wamel WJ, Ruyken M, van Kessel KP, van Strijp JA (2005a) Anti-opsonic properties of staphylokinase. Microbes Infect 7:476–484 Rooijakkers SH, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, van Wamel WJ, van Kessel KP, van Strijp JA (2005b) Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6:920–927 Rooijakkers SH, Ruyken M, van Roon J, van Kessel KP, van Strijp JA, van Wamel WJ (2006) Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus Aureus. Cell Microbiol 8:1282–1293 Root RK, Rosenthal AS, Balestra DJ (1972) Abnormal bactericidal, metabolic, and lysosomal functions of Chediak-Higashi syndrome leukocytes. J Clin Invest 51:649–665 Ruiz-Perez F, Wahid R, Faherty CS, Kolappaswamy K, Rodriguez L, Santiago A, Murphy E, Cross A, Sztein MB, Nataro JP (2011) Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia Coli target a broad range of leukocyte glycoproteins. Proc Natl Acad Sci U S A 108:12881–12886 Seilie ES, Bubeck Wardenburg J (2017) Staphylococcus Aureus Pore-forming toxins: the interface of pathogen and host complexity. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2017.04.003 Senior BW, Dunlop JI, Batten MR, Kilian M, Woof JM (2000) Cleavage of a recombinant human immunoglobulin A2 (IgA2)-IgA1 hybrid antibody by certain bacterial IgA1 proteases. Infect Immun 68:463–469 Serruto D, Rappuoli R, Scarselli M, Gros P, van Strijp JA (2010) Molecular mechanisms of complement evasion: learning from staphylococci and meningococci. Nat Rev Microbiol 8:393–399 Spaan AN, Surewaard BGJ, Nijland R, van Strijp JAG (2013a) Neutrophils versus Staphylococcus Aureus: a biological tug of war. Annu Rev Microbiol 67:629–650 Spaan AN, Henry T, van Rooijen WJ, Perret M, Badiou C, Aerts PC, Kemmink J, de Haas CJ, van Kessel KP, Vandenesch F, Lina G, van Strijp JA (2013b) The staphylococcal toxin Panton-valentine Leukocidin targets human C5a receptors. Cell Host Microbe 13:584–594 Spaan AN, van Strijp JAG, Torres VJ (2017) Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 15:435–447 Surewaard BG, Nijland R, Spaan AN, Kruijtzer JA, de Haas CJ, van Strijp JA (2012) Inactivation of staphylococcal phenol soluble modulins by serum lipoprotein particles. PLoS Pathog 8:e1002606 Surewaard BG, Deniset JF, Zemp FJ, Amrein M, Otto M, Conly J, Omri A, Yates RM, Kubes P (2016) Identification and treatment of the Staphylococcus Aureus reservoir in vivo. J Exp Med 213:1141–1151 Surewaard BGJ, Kubes P (2017) Measurement of bacterial capture and phagosome maturation of Kupffer cells by intravital microscopy. Methods 128:12–19 Surewaard BGJ, de Haas CJC, Vervoort F, Rigby KM, DeLeo FR, Otto M, van Strijp JAG, Nijland R. 2013. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol: n/a-n/a Thammavongsa V, Kim HK, Missiakas D, Schneewind O (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13:529–543 Thwaites GE, Gant V (2011) Are bloodstream leukocytes Trojan horses for the metastasis of Staphylococcus Aureus? Nat Rev Microbiol 9:215–222 Tuchscherr L, Medina E, Hussain M, Volker W, Heitmann V, Niemann S, Holzinger D, Roth J, Proctor RA, Becker K, Peters G, Loffler B (2011) Staphylococcus Aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med 3:129–141 Uchiyama S, Carlin AF, Khosravi A, Weiman S, Banerjee A, Quach D, Hightower G, Mitchell TJ, Doran KS, Nizet V (2009) The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. J Exp Med 206:1845–1852 Vandenesch F, Naimi T, Enright MC, Lina G, Nimmo GR, Heffernan H, Liassine N, Bes M, Greenland T, Reverdy ME, Etienne J (2003) Community-acquired methicillin-resistant Staphylococcus Aureus carrying Panton-valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9:978–984 Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Saïd-Salim B, Porcella SF, Long RD, Dorward DW, Gardner DJ, Kreiswirth BN, Musser JM, DeLeo FR (2005) Insights into mechanisms used by Staphylococcus Aureus to avoid destruction by human neutrophils. J Immunol 175:3907–3919 Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, DeLeo FR, Otto M (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13:1510–1514 Wanner S, Schade J, Keinhorster D, Weller N, George SE, Kull L, Bauer J, Grau T, Winstel V, Stoy H, Kretschmer D, Kolata J, Wolz C, Broker BM, Weidenmaier C (2017) Wall teichoic acids mediate increased virulence in Staphylococcus Aureus. Nat Microbiol 2:16257 Wartha F, Beiter K, Albiger B, Fernebro J, Zychlinsky A, Normark S, Henriques-Normark B (2007) Capsule and D-alanylated lipoteichoic acids protect Streptococcus Pneumoniae against neutrophil extracellular traps. Cell Microbiol 9:1162–1171 Weidenmaier C, Goerke C, Wolz C (2012) Staphylococcus Aureus determinants for nasal colonization. Trends Microbiol 20:243–250 Weinberger DM, Malley R, Lipsitch M (2011) Serotype replacement in disease after pneumococcal vaccination. Lancet 378:1962–1973 Weiser JN (2010) The pneumococcus: why a commensal misbehaves. J Mol Med 88:97–102 Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus Aureus infections. Lancet Infect Dis 5:751–762 Yesilkaya H, Andisi VF, Andrew PW, Bijlsma JJ (2013) Streptococcus Pneumoniae and reactive oxygen species: an unusual approach to living with radicals. Trends Microbiol 21:187–195 Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert HC, Malawista SE, de Boisfleury Chevance A, Zhang K, Conly J, Kubes P (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18:1386–1393 Zhang J-R, Mostov KE, Lamm ME, Nanno M, Shimida S-I, Ohwaki M, Tuomanen E (2000) The polymeric immunoglobulin receptor Translocates Pneumococci across human nasopharyngeal epithelial cells. Cell 102:827–837 Zhu W, Murray PR, Huskins WC, Jernigan JA, McDonald LC, Clark NC, Anderson KF, McDougal LK, Hageman JC, Olsen-Rasmussen M, Frace M, Alangaden GJ, Chenoweth C, Zervos MJ, Robinson-Dunn B, Schreckenberger PC, Reller LB, Rudrik JT, Patel JB (2010) Dissemination of an Enterococcus Inc18-like vanA plasmid associated with vancomycin-resistant Staphylococcus Aureus. Antimicrob Agents Chemother 54:4314–4320 Zipfel PF, Skerka C (2014) Staphylococcus Aureus: the multi headed hydra resists and controls human complement response in multiple ways. Int J Med Microbiol 304:188–194