Neutron density fluctuation and neutron–proton correlation from AMPT model
Tóm tắt
Using the multiphase transport (AMPT) model, we study the relative neutron density fluctuation and neutron–proton correlation in matter produced by Au + Au collisions at
$$\sqrt{s_\text {NN}}= $$
7.7–200 GeV. The rapidity, centrality, and energy dependence of these two observations are also discussed. The light nuclei yield ratio of proton, deuteron, and triton
$$N_tN_p/N_d^2$$
calculated directly from the relative neutron density fluctuation and neutron–proton correlation, decreases with rapidity coverage and increases with collision centrality. Our study also found that the ratio does not exhibit any non-monotonic behavior in collision energy dependence. Since there is no first-order phase transition or critical physics in the AMPT model, our work provides a reference for extracting the relative neutron density fluctuation from light nuclei production in experiments.
Tài liệu tham khảo
P. Braun-Munzinger, J. Wambach, Rev. Mod. Phys. 81, 1031 (2009). https://doi.org/10.1103/RevModPhys.81.1031
Y. Aoki, G. Endrodi, Z. Fodor, S.. D. Katz, K..K. Szabo, Nature 443, 675 (2006). https://doi.org/10.1038/nature05120
P. de Forcrand, O. Philipsen, Nucl. Phys. B 642, 290 (2002). https://doi.org/10.1016/s0550-3213(02)00626-0
Z. Fodor, S..D. Katz, K..K. Szabó, Phys. Lett. B 568, 73 (2003). https://doi.org/10.1016/j.physletb.2003.06.011
Z. Fodor, S..D. Katz, J. High Energy Phys. 2004, 050 (2004). https://doi.org/10.1088/1126-6708/2004/04/050
R.V. Gavai, S. Gupta, Phys. Rev. D 71(2005). https://doi.org/10.1103/PhysRevD.71.114014
F. Karsch et al., Nucl. Phys. A 956, 352 (2016). https://doi.org/10.1016/j.nuclphysa.2016.01.008
S. Gupta, X. Luo, B. Mohanty, H..G. Ritter, N. Xu, Science 332, 1525 (2011). https://doi.org/10.1126/science.1204621
M. Stephanov, PoS LAT2006, 024 (2006). https://doi.org/10.22323/1.032.0024
M..M. Aggarwal et al., Phys. Rev. Lett. 105, 022302 (2010). https://doi.org/10.1103/PhysRevLett.105.022302
L. Adamczyk et al., Phys. Rev. Lett. 112, 032302 (2014). https://doi.org/10.1103/PhysRevLett.112.032302
L. Adamczyk et al., Phys. Rev. Lett. 113, 092301 (2014b). https://doi.org/10.1103/PhysRevLett.113.092301
L. Adamczyk et al., Phys. Lett. B 785, 551 (2018). https://doi.org/10.1016/j.physletb.2018.07.066
J. Adam et al., Phys. Rev. C 100 (2019). https://doi.org/10.1103/PhysRevC.100.014902
J. Adam et al., Phys. Rev. Lett. 126, 092301 (2021). https://doi.org/10.1103/PhysRevLett.126.092301
K..-J. Sun, L..-W. Chen, C..M. Ko, Z. Xu, Phys. Lett. B 774, 103 (2017). https://doi.org/10.1016/j.physletb.2017.09.056
K..-J. Sun, L..-W. Chen, C..M. Ko, J. Pu, Z. Xu, Phys. Lett. B 781, 499 (2018). https://doi.org/10.1016/j.physletb.2018.04.035
N. Yu, D. Zhang, X. Luo, Chin. Phys. C 44 (2020). https://doi.org/10.1088/1674-1137/44/1/014002
W. Zhao, K.-j Sun, C.M. Ko, X. Luo, Phys. Lett. B 820 (2021). https://doi.org/10.1016/j.physletb.2021.136571
H. Liu, D. Zhang, S. He, K.-J. Sun, N. Yu, X. Luo, Phys. Lett. B 805(2020). https://doi.org/10.1016/j.physletb.2020.135452
D. Zhang, Nucl. Phys. A 1005 (2021). https://doi.org/10.1016/j.nuclphysa.2020.121825
T. S. Collaboration, href@noop (2022). arXiv:2209.08058
Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, Phys. Rev. C 72 (2005). https://doi.org/10.1103/PhysRevC.72.064901
Z..-W. Lin, Phys. Rev. C 90 (2014). https://doi.org/10.1103/PhysRevC.90.014904
Z.-W. Lin, Phys. Rev. C 90 (2014). https://doi.org/10.1103/PhysRevC.90.014904
K.-J. Sun, C.M. Ko, Z.-W. Lin, Phys. Rev. C 103 (2021). https://doi.org/10.1103/PhysRevC.103.064909
T. Anticic et al., Phys. Rev. C 94 (2016). https://doi.org/10.1103/PhysRevC.94.044906 (NA49 Collaboration)