Neutron Detection Using a Gadolinium-Cathode Gas Electron Multiplier Detector

Journal of the Korean Physical Society - Tập 76 - Trang 961-966 - 2020
DongHyun Song1, Kyungeon Choi1, Youngun Jeng1, Yechan Kang1, Jason SangHun Lee1, Inkyu Park1, Sunyoung Yoo1
1Department of Physics, University of Seoul, Seoul, Korea

Tóm tắt

A gas electron multiplier (GEM) detector with a gadolinium cathode has been developed to explore its potential application as a neutron detector. It consists of three standard-sized (10 × 10 cm2) GEM foils and a thin gadolinium plate as the cathode, which is used as a neutron converter. The neutron detection efficiencies were measured for two different cathode setups and for two different drift gaps. The thermal neutron source at the Korea Research Institute of Standards and Science (KRISS) was used to measure the neutron detection efficiency. Based on the neutron flux measured by KRISS, the neutron detection efficiency of our gadolinium GEM detector was 4.630 ± 0.034(stat.) ± 0.279(syst.)%.

Tài liệu tham khảo

B.J. Mijnheer et al., Radiother. Oncol. 8, 3 (1987). J. Daillant and A. Gibaud, X-ray and Neutron Reflectivity: Principles and Applications (Springer, Berlin, Heidelberg, 2002). B. Ra, T. Jayakumar and M. Thavasimuthu, Practical Non-destructive Testing (Woodhead Publishing, Kalpakkam, 2002). N. Fomin et al., Nucl. Instrum. Methods Phys. Res. A 773, (2015). M. Lindroos et al., Nucl. Instrum. Methods Phys. Res. B 269, 3258 (2011). CSNS collaboration, Nucl. Instrum. Methods Phys. Res. A 600, 10 (2009). W. Sauerwein and A. Zurlo, Eur. J. Cancer 38, 31 (2002). T. Kageji et al., Int. J. Radiat. Oncol. Biol. Phys. 65, 1446 (2006). Japanese Society of Neutron Capture Therpy, http://www.jsnct.jp/e/outline/index.html. DAWONSYS, Development of the accelerator based Boron Neutron Capture Therapy system for the cancer treatment within 1 hour therapeutic time, MOTIE (100063465). R. T. Kouzes et al., Nucl. Instrum. Methods Phys. Res. A 784, 172 (2015). H. D. Choi et al., Nucl. Sci. Eng. 177, 219 (2014). D. Pfeiffer et al., J. Instrum. 11, 5011 (2016). F. Sauli et al., Nucl. Instrum. Methods Phys. Res. A 396, 50 (1997). F. Sauli, Nucl. Instrum. Methods Phys. Res. A 805, 2 (2016). I. Park et al., New Phys.: Sae Mulli 64, 266 (2014) CMS Collaboration, CMS Technical Design Report for the Muon Endcap GEM Upgrade, CERN-LHCC-2015-012, CMS-TDR-013, Sep. 2015. T. Yano, Nucl. Instrum. Methods Phys. Res. A 845, 425 (2017). L. R. Cao et al., Nucl. Instrum. Methods Phys. Res. A 705, 36 (2013). Geant4 Physics Reference Manual, http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf. E. Mendoza and D. Cano-Ott, Update of the Evaluated Neutron Cross Section Libraries for the Geant4 Code (see also INDC(NDS)-0612) (INDC(NDS)–0758), International Atomic Energy Agency (IAEA) (2018). Evaluated Nuclear Structure Data File (ENSDF), https://www.nndc.bnl.gov/nudat2/, Brookhaven National Laboratory. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments: A How to Approach (Springer, Berlin, 1987). J. Kim et al., Radiat. Meas. 107, 73 (2017).