Neutral functional sequential differential equations with Caputo fractional derivative on time scales

Jamal Eddine Lazreg1, Nadia Benkhettou1, Mouffak Benchohra1, Erdal Karapinar2,3
1Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbes, Sidi Bel Abbes, Algeria
2Division of Applied Mathematics, Thu Dau Mot University, Thu Dau Mot, Vietnam
3Department of Mathematics, Çankaya University, Etimesgut, Turkey

Tóm tắt

In this paper, we establish the existence and uniqueness of a solution for a class of initial value problems for implicit fractional differential equations with Caputo fractional derivative. The arguments are based upon the Banach contraction principle, the nonlinear alternative of Leray–Schauder type and Krasnoselskii fixed point theorem. As applications, two examples are included to show the applicability of our results.

Tài liệu tham khảo

Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations Existence and Stability. de Gruyter, Berlin (2018) Abbas, S., Benchohra, M., Lazreg, J.E., Alsaedi, A., Zhou, Y.: Existence and Ulam stability for fractional differential equations of Hilfer–Hadamard type. Adv. Differ. Equ. 2017, Article ID 180 (2017) Abbas, S., Benchohra, M., Lazreg, J.E., Zhou, Y.: A survey on Hadamard and Hilfer fractional differential equations: analysis and stability. Chaos Solitons Fractals 102, 47–71 (2017) Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012) Abbas, S., Benchohra, M., N’Guérékata, G.M.: Advanced Fractional Differential and Integral Equations. Nova Science Publishers, New York (2014) Abdeljawad, A., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11, 686 (2019) Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021) Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, M.: On the solution of a boundary value problem associated with a fractional differential equation. Math. Methods Appl. Sci. https://doi.org/10.1002/mma.665 Afshari, H., Kalantari, S., Karapinar, E.: Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015, Article ID 286 (2015) Afshari, H., Karapınar, E.: A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces. Adv. Differ. Equ. 2020, Article ID 616 (2020) Agarwal, R., O’Regan, D., Saker, S.: Dynamic Inequalities on Time Scales. Springer, Berlin (2014) Agarwal, R.P., Aksoy, U., Karapinar, E., Erhan, I.M.: F-contraction mappings on metric-like spaces in connection with integral equations on time scales. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114(3), Article ID 147 (2020) Ahmad, B., Ntouyas, S.: Existence and uniqueness of solutions for Caputo–Hadamard sequential fractional order neutral functional differential equations. Electron. J. Differ. Equ. 2017, Article ID 36 (2017) Ahmadkhanlu, A., Jahanshahi, M.: On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales. Bull. Iranian Math. Soc. 38(1), 241–252 (2012) Alqahtani, B., Aydi, H., Karapınar, E., Rakocevic, V.: A solution for Volterra fractional integral equations by hybrid contractions. Mathematics 7, 694 (2019) Aulbach, B., Hilger, S.: A unified approach to continuous and discrete dynamics. In: Qualitative Theory of Differential Equations, Szeged, 1988. Colloq. Math. Soc. János Bolyai, vol. 53, pp. 37–56. North-Holland, Amsterdam (1990) Baleanu, D., Güvenç, Z.B., Machado, J.A.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, New York (2010) Benkhettou, N., Brito da Cruz, A.M.C., Torres, D.F.M.: A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration. Signal Process. 107, 230–237 (2015) Benkhettou, N., Hassani, S., Torres, D.F.M.: A conformable fractional calculus on arbitrary time scales. J. King Saud Univ., Sci. 28, 93–98 (2016) Bohner, M., Georgiev, S.G.: Multivariable Dynamic Calculus on Time Scales. Springer, Berlin (2016) Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001) Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003) Devaraj, V., Kuppusamy, K., Seenith, S.: On the behavior of solutions of fractional differential equations on time scale via Hilfer fractional derivatives. Fract. Calc. Appl. Anal. 21(4), 1120–1138 (2018) Georgiev, S.: Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales. Springer, Berlin (2018) Georgiev, S.G.: Integral Equations on Time Scales. Atlantis Press, Paris (2016) Georgiev, S.G.: Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales. Springer, Berlin (2018) Georgiev, S.G.: Functional Dynamic Equations on Time Scales. Springer, Berlin (2019) Hilger, S.: Analysis on measure chains a unified approach to continuous and discrete calculus. Results Math. 18(1–2), 18–56 (1990) Karapinar, E., Abdeljawad, T., Jarad, F.: Applying new fixed point theorems on fractional and ordinary differential equations. Adv. Differ. Equ. 2019, 421 (2019) Karapinar, E., Duy Binh, H., Hoang Luc, N., Huu, N.: Can on continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems. Adv. Differ. Equ. 2021, 70 (2021). https://doi.org/10.1186/s13662-021-03232-z Karapinar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations. Mathematics 7, 444 (2019) Vipin, K., Muslim, M.: Existence and stability results of nonlinear fractional differential equations with nonlinear integral boundary condition on time scales. Appl. Appl. Math. 2020(6), 129–145 (2020) Wang, C., Agarwal, R.P., O’Regan, D., Sakthivel, R.: Theory of Translation Closedness for Time Scales. Springer, Berlin (2020) Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)