Neuroprotective and anti-oxidant effects of caffeic acid isolated from Erigeron annuus leaf

Chang‐Ho Jeong1, Hee Rok Jeong2, Gi Jun Choi2, Dae‐Ok Kim1, Uk Lee3, Ho Jin Heo2
1Department of Food Science and Biotechnology, Institute of Life Sciences and Resources, Kyung Hee University, Yongin, 446-701, Korea
2Department of Food Science and Technology, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 660-701, Korea
3Department Special Purpose Trees, Korea Forest Research Institute, Suwon, 441-847, Korea

Tóm tắt

Abstract Background

Since oxidative stress has been implicated in a neurodegenerative disease such as Alzheimer's disease (AD), natural antioxidants are promising candidates of chemopreventive agents. This study examines antioxidant and neuronal cell protective effects of various fractions of the methanolic extract of Erigeron annuus leaf and identifies active compounds of the extract.

Methods

Antioxidant activities of the fractions from Erigeron annuus leaf were examined with [2,2-azino-bis(3-ethylbenz thiazoline-6-sulfonic acid diammonium salt)] (ABTS) and ferric reducing antioxidant power (FRAP) assays. Neuroprotective effect of caffeic acid under oxidative stress induced by H2O2 was investigated with [3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) and lactate dehydrogenase (LDH) assays.

Results

This study demonstrated that butanol fraction had the highest antioxidant activity among all solvent fractions from methanolic extract E. annuus leaf. Butanol fraction had the highest total phenolic contents (396.49 mg of GAE/g). Caffeic acid, an isolated active compound from butanol fraction, showed dose-dependent in vitro antioxidant activity. Moreover, neuronal cell protection against oxidative stress induced cytotoxicity was also demonstrated.

Conclusion

Erigeron annuus leaf extracts containing caffeic acid as an active compound have antioxidative and neuroprotective effects on neuronal cells.

Từ khóa


Tài liệu tham khảo

Cui K, Luo X, Xu K, Ven Murthy MR: Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuropsychopharmacol Biol Psychiatry. 2004, 28: 771-799. 10.1016/j.pnpbp.2004.05.023.

Olanow CW: A radical hypothesis for neurodegeneration. Trends Neurosci. 1993, 16: 439-444. 10.1016/0166-2236(93)90070-3.

Zhang HY, Tang XC: Huperzine B, a novel acetylcholinesterase inhibitor, attenuates H2O2 induced injury in PC12 cells. Neurosci Lett. 2000, 292: 41-44. 10.1016/S0304-3940(00)01433-6.

Valencia A, Morán J: Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic Biol Med. 2004, 36: 1112-1125. 10.1016/j.freeradbiomed.2004.02.013.

Mount C, Downton C: Alzheimer disease: progress of profit?. Nat Med. 2006, 12: 780-784. 10.1038/nm0706-780.

Markesbery WR, Carney JM: Oxidative alterations in Alzheimer's disease. Brain Pathol. 1999, 9: 133-146.

Kou MC, Yen JH, Hong JT, Wang CL, Lin CW, Wu MJ: Cyphomandra betacea Sendt. phenolics protect LDL from oxidation and PC12 cells from oxidative stress. Lebenson Wiss Technol. 2009, 42: 458-463.

Youdim KA, Joseph JA: A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects. Free Radic Biol Med. 2001, 30: 583-594. 10.1016/S0891-5849(00)00510-4.

Grundman M, Grundman M, Delaney P: Antioxidant strategies for Alzheimer's disease. Proc Nutr Soc. 2002, 61: 191-202. 10.1079/PNS2002146.

Yoo NH, Jang DS, Yoo JL, Lee YM, Kim YS, Cho JH, Kim JS: Erigeroflavanone, a flavanone derivative from the flowers of Erigeron annuus with protein glycation and aldose reductase inhibitory activity. J Nat Prod. 2008, 71: 713-715. 10.1021/np070489a.

Hashidoko Y: Pyromeconic acid and its glucosidic derivatives from leaves of Erigeron annuus, and the siderophile activity of pyromeconic acid. Biosci Biotechnol Biochem. 1995, 59: 886-890. 10.1271/bbb.59.886.

Oh H, Lee S, Lee HS, Lee DH, Lee SY, Chung HT, Kim TS, Kwon TO: Germination inhibitory constituents from Erigeron annuus. Phytochemistry. 2002, 61: 175-179. 10.1016/S0031-9422(02)00236-4.

Li X, Pan J, Gao K: Gamma-pyranone derivatives and other constituents from Erigeron annuus. Pharmazie. 2006, 61: 474-477.

Iijima T, Yaoita Y, Kikuchi M: Two new cyclopentenone derivatives and a new cyclooctadienone derivative from Erigeron annuus (L.) PERS., Erigeron philadelphicus L., and Erigeron sumatrensis RETZ. Chem Pharm Bull. 2003, 51: 894-896. 10.1248/cpb.51.894.

Li X, Yang M, Han YF, Gao K: New sesquiterpenes from Erigeron annuus. Planta Med. 2005, 71: 268-272.

Kim HY, Kim K: Protein glycation inhibitory and antioxidative activities of some plant extracts in vitro. J Agric Food Chem. 2003, 51: 1586-1591. 10.1021/jf020850t.

Jang DS, Yoo NH, Lee YM, Yoo JL, Kim YS, Kim JS: Constituents of the flowers of Erigeron annuus with inhibitory activity on the formation of advanced glycation end products (AGEs) and aldose reductase. Arch Pharm Res. 2008, 31: 900-904. 10.1007/s12272-001-1244-z.

Kim OS, Kim YS, Jang DS, Yoo NH, Kim JS: Cytoprotection against hydrogen peroxide-induced cell death in cultured mouse mesangial cells by erigeroflavanone, a novel compound from the flowers of Erigeron annuus. Chem Biol Interact. 2009, 180: 414-420. 10.1016/j.cbi.2009.03.021.

Jang DS, Yoo NH, Kim NH, Lee YM, Kim CS, Kim J, Kim JH, Kim JS: 3,5-Di-O-caffeoyl-epi-quinic acid from the leaves and stems of Erigeron annuus inhibits protein glycation, aldose reductase, and cataractogenesis. Bio Pharm Bull. 2010, 33: 329-333. 10.1248/bpb.33.329.

Jeong CH, Choi GN, Kim JH, Kwak JH, Kim DO, Kim YJ, Heo HJ: Antioxidant activities from the aerial parts of Platycodon grandiflorum. Food Chem. 2010, 118: 278-282. 10.1016/j.foodchem.2009.04.134.

Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF: Antioxidant activity of extracts from Acacia confuse bark and heartwood. J Agric Food Chem. 2001, 49: 3420-3424. 10.1021/jf0100907.

Heo HJ, Cho HY, Hong B, Kim HK, Kim EK, Kim BG, Shin DH: Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against Aβ-induced oxidative stress in PC12 cells. Amyloid. 2001, 8: 194-201. 10.3109/13506120109007362.

Rice-Evans CA, Miller NJ: Antioxidant activities of flavonoids as bioactive components of food. Biochem Soc Trans. 1996, 24: 790-795.

Zheng W, Wang SY: Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem. 2001, 49: 5165-5170. 10.1021/jf010697n.

Lim EK, Higins GS, Li Y, Bowles J: Regioselectively of glucosylation of caffeic acid by a UDP-glucose: glucosyltransferase is maintained in planta. Biochem J. 2001, 373: 987-992.

Sul DG, Kim HS, Lee DH, Joo SS, Hwang KW, Park SY: Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci. 2009, 84: 257-262. 10.1016/j.lfs.2008.12.001.

Devipriya N, Sudheer AR, Menon VP: Caffeic acid protects human peripheral blood lymphocytes against gamma radiation-induced cellular damage. J Biochem Mol Toxicol. 2008, 22: 175-186. 10.1002/jbt.20228.

Müller WE, Romero FJ, Perovic S, Pergande G, Piloglou P: Protection of flupirtine on beta-amyloid-induced apoptosis in neuronal cells in vitro: prevention of amyloid-induced glutathione depletion. J Neurochem. 1997, 68: 2371-2377.