Neuroprotective Role of Antidiabetic Drug Metformin Against Apoptotic Cell Death in Primary Cortical Neurons

Mohamad-Yehia El-Mir1, Dominique Détaille2, Gloria R-Villanueva1, Marı́a Delgado-Esteban3, Bruno Guigas2, Stéphane Attia2, Éric Fontaine2, Ángeles Almeida4, Xavier Leverve5
1Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
2INSERM U884 Bioénergétique Fondamentale et Appliquée, BP 53X, 38041, Grenoble Cedex, France
3Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
4Hospital Clinico Universitario de Salamanca, Salamanca, Spain
5Université Joseph Fourier, Grenoble, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Almeida, A., Moncada, S., & Bolanos, J. P. (2004). Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nature Cell Biology, 6, 45–51.

Andersen, J. K. (2004). Oxidative stress in neurodegeneration: Cause or consequence? Nature Medicine, 10, S18–S25.

Baines, C. P., Kaiser, R. A., & Purcell, N. H., et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature, 434, 658–662.

Barrett, L. E., Van Bockstaele, E. J., Sul, J. Y., Takano, H., Haydon, P. G., & Eberwine, J. H. (2006). Elk-1 associates with the mitochondrial permeability transition pore complex in neurons. Proceedings of the National Academy of Sciences of the United States of America, 103, 5155–5160.

Batandier, C., Guigas, B., & Detaille, D., et al. (2006). The ROS production induced by a reverse-electron flux at respiratory chain complex I is hampered by metformin. J. Biomembr. Bioenerg., 38, 33–42.

Bolanos, J. P., Almeida, A., & Stewart, V., et al. (1997). Nitric oxide-mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases. Journal of Neurochemistry, 68, 2227–2240.

Brunmair, B., Staniek, K., & Gras, F., et al. (2004). Thiazolidinediones, like metformin, inhibit respiratory complex I: A common mechanism contributing to their antidiabetic action. Diabetes, 53, 1052–1059.

Chauvin, C., De Oliveira, F., Ronot, X., Mousseau, M., Le, , verve, X., & Fontaine, E. (2001). Rotenone inhibits the mitochondrial permeability transition-induced cell death in U937 and KB cells. Journal of Biological Chemistry, 276, 41394–41398.

Chong, Z. Z., Li, F., & Maiese, K. (2005). Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenarative disease. Progress in Neurobiology, 75, 207–246.

Custodio, J. B., Cardoso, C. M., & Almeida, L. M. (2002). Thiol protecting agents and antioxidants inhibit the mitochondrial permeability transition promoted by etoposide: Implications in the prevention of etoposide-induced apoptosis. Chemico-Biological Interactions, 140, 169–184.

Delgado-Esteban, M., Martin-Zanca, D., Andres-Martin, L., Almeida, A., & Bolanos, J. P. (2007). Inhibition of PTEN by peroxynitrite activates the phosphoinositide-3-kinase/akt neuroprotective signaling pathway. Journal of Neurochemistry, 102, 194–205.

Detaille, D., Guigas, B., & Chauvin, C., et al. (2005). Metformin prevents high glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes, 54, 2179–2187.

Diaz-Hernandez, J. I., Moncada, S., Bolanos, J. P., & Almeida, A. (2007). Poly(ADP-ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress. Cell Death and Differentiation, 14, 1211–1221.

Duchen, M. R. (2004). Roles of mitochondria in health and disease. Diabetes, 53, S96–S102.

Dyck, P. J., Kratz, K. M., & Lehman, K. A., et al. (1991). The rochester diabetic neuropathy study: Design, criteria for types of neuropathy, selection bias, and reproducibility of neuropathic tests. Neurology, 41, 799–807.

El-Mir, M. Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M., & Leverve, X. (2000). Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. Journal of Biological Chemistry, 275, 223–228.

Fontaine, E., Eriksson, O., Ichas, F., & Bernardi, P. (1998). Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation by electron flow through the respiratory chain complex I. Journal of Biological Chemistry, 273, 12662–12668.

Forte, M., & Bernardi, P. (2005). Genetic dissection of the permeability transition pore. Journal of Bioenergetics and Biomembranes, 37, 121–128.

Gillessen, T., Grasshoff, C., & Szinicz, L. (2002). Mitochondrial permeability transition can be directly monitored in living neurons. Biomedicine & Pharmacotherapy, 56, 186–193.

Gilman, C. P., Chan, S. L., Guo, Z., Zhu, X., Greig, N., & Mattson, M. P. (2003). p53 is present in synapses where it mediates mitochondrial dysfunction and synaptic degeneration in response to DNA damage, and oxidative and excitotoxic insults. Neuromolecular Medecine, 3, 159–172.

Green, D. R., & Reed, J. C. (1998). Mitochondria and apoptosis. Science, 281, 1309–1312.

Guigas, B., Detaille, D., & Chauvin, C., et al. (2004). Metformin inhibits mitochondrial permeability transition and cell death: A pharmacological in vitro study. Biochemical Journal, 382, 877–884.

Hawley, S. A., Gadalla, A. E., Olsen, G. S., & Hardie, D. G. (2002). The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes, 51, 2420–2425.

Karpinich, N. O., Tafani, M., Rothman, R. J., Russo, M. A., & Farber, J. L. (2002). The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. Journal of Biological Chemistry, 277, 16547–16552.

Karpinich, N. O., Tafani, M., Schneider, T., Russo, M. A., & Farber, J. L. (2006). The course of etoposide-induced apoptosis in Jurkat cells lacking p53 and bax. Journal of Cellular Physiology, 208, 55–63.

Kroemer, G., & Reed, J. C. (2000). Mitochondrial control of cell death. Nature Medicine, 6, 513–519.

Kurosu, T., Fukuda, T., Miki, T., & Miura, O. (2003). Bcl6 overexpression prevents increase in reactive oxygen species and inhibits apoptosis induced by chemotherapeutic reagents in B-cell lymphoma cells. Oncogene, 22, 4459–4468.

Leverve, X. M., Guigas, B., & Detaille, D., et al. (2003). Mitochondrial metabolism and type-2 diabetes: A specific target of metformin. Diabetes & Metabolism, 29, 6S88–6S94.

Ma, T. C., Buescher, J. L., & Oatis, B., et al. (2007). Metformin therapy in a transgenic mouse model of Huntington’s disease. Neuroscience Letters, 411, 98–103.

Mattson, M. P., & Kroemer, G. (2003). Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends in Molecular Medicine, 9, 196–205.

Nakajima, M., Kashiwagi, K., & Ohta, J., et al. (1994). Etoposide induces programmed death in neurons cultured from the fetal rat central nervous system. Brain Research, 641, 350–352.

Owen, M. R., Doran, E., & Halestrap, A. P. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex I of the mitochondrial respiratory chain. Biochemical Journal, 348, 607–614.

Panov, A. V., Gutekunst, C.-A., & Leavitt, B. R., et al. (2002). Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nature Neuroscience, 5, 731–736.

Pham, N.-U., & Hedley, D. W. (2001). Respiratory chain-generated oxidative stress following treatment of leukemic blasts with DNA-damaging agents. Experimental Cell Research, 264, 345–352.

Petronilli, V., Miotto, G., & Canton, M., et al. (1999). Transient and long-lasting openings of the mitochondrial permeability pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophysical Journal, 76, 725–734.

Pirart, J. (1977). Diabetes mellitus and its degenerative complications: A prospective study of 4,400 patients observed between 1947 and 1973. Diabetes & Metabolism, 3, 245–255.

Precht, T. A., Phelps, R. A., & Linseman, D. A., et al. (2005). The permeability transition pore triggers Bax translocation to mitochondria during neuronal apoptosis. Cell Death and Differentiation, 12, 255–265.

Rapin, J. R., Lamproglou, I., Jacques, V., & Leponcin, M. (1988). Effects of metformin on metabolic indices of cerebral and peripheral ischemia. Diabetes & Metabolism, 14(Suppl 4bis), 587–590.

Robertson, J. D., Gogvadze, V., Zhivotovsky, B., & Orrenius, S. (2000). Distinct pathways for stimulation of cytochrome c release by etoposide. Journal of Biological Chemistry, 275, 32438–32443.

Schinzel, A. C., Takeuchi, O., & Huang, Z., et al. (2005). Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proceedings of the National Academy of Sciences of the United States of America, 102, 12005–12010.

Wei, M. C., Zong, W. X., & Cheng, E. H., et al. (2001). Proapoptotic Bax and Bak: a requisite gateway to mitochondrial dysfunction and death. Science, 292, 727–730.

Yuan, J., & Yankner, B. A. (2000). Apoptosis in the nervous system. Nature, 407, 802–809.

Zhou, G., Myers, R., & Li, Y., et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation, 108, 1167–1174.

Zou, M. H., Kirkpatrick, S. S., & Davis, B. J., et al. (2004). Activation of the AMP-activated protein kinase by the antidiabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. Journal of Biological Chemistry, 279, 43940–43951.