Neuroprotection with metformin and thymoquinone against ethanol-induced apoptotic neurodegeneration in prenatal rat cortical neurons
Tóm tắt
Exposure to ethanol during early development triggers severe neuronal death by activating multiple stress pathways and causes neurological disorders, such as fetal alcohol effects or fetal alcohol syndrome. This study investigated the effect of ethanol on intracellular events that predispose developing neurons for apoptosis via calcium-mediated signaling. Although the underlying molecular mechanisms of ethanol neurotoxicity are not completely determined, mitochondrial dysfunction, altered calcium homeostasis and apoptosis-related proteins have been implicated in ethanol neurotoxicity. The present study was designed to evaluate the neuroprotective mechanisms of metformin (Met) and thymoquinone (TQ) during ethanol toxicity in rat prenatal cortical neurons at gestational day (GD) 17.5.
We found that Met and TQ, separately and synergistically, increased cell viability after ethanol (100 mM) exposure for 12 hours and attenuated the elevation of cytosolic free calcium [Ca2+]c. Furthermore, Met and TQ maintained normal physiological mitochondrial transmembrane potential (ΔψM), which is typically lowered by ethanol exposure. Increased cytosolic free [Ca2+]c and lowered mitochondrial transmembrane potential after ethanol exposure significantly decreased the expression of a key anti-apoptotic protein (Bcl-2), increased expression of Bax, and stimulated the release of cytochrome-c from mitochondria. Met and TQ treatment inhibited the apoptotic cascade by increasing Bcl-2 expression. These compounds also repressed the activation of caspase-9 and caspase-3 and reduced the cleavage of PARP-1. Morphological conformation of cell death was assessed by TUNEL, Fluoro-Jade-B, and PI staining. These staining methods demonstrated more cell death after ethanol treatment, while Met, TQ or Met plus TQ prevented ethanol-induced apoptotic cell death.
These findings suggested that Met and TQ are strong protective agents against ethanol-induced neuronal apoptosis in primary rat cortical neurons. The collective data demonstrated that Met and TQ have the potential to ameliorate ethanol neurotoxicity and revealed a possible protective target mechanism for the damaging effects of ethanol during early brain development.
Từ khóa
Tài liệu tham khảo
Jones KL, Smith DW, Ulleland CN, Streissguth AP: Pattern of malformation in offspring of chronic alcoholic mothers. Lancet. 1973, 1: 1267-1271.
Miller MW: Effects of alcohol on the generation and migration of cerebral cortical neurons. Science. 1986, 233: 1308-1311. 10.1126/science.3749878.
Miller MW: Mechanisms of ethanol induced neuronal death during development: from the molecule to behavior. Alcohol Clin Exp Res. 1996, 20: 128-132. 10.1111/j.1530-0277.1996.tb01762.x.
Naseer MI, Lee HY, Ullah N, Ullah I, Park MS, Kim SH, Kim MO: Ethanol and PTZ effects on siRNA-mediated GABAB1 receptor: Down regulation of intracellular signaling pathway in prenatal rat cortical and hippocampal neurons. Synapse. 2010, 64: 181-190. 10.1002/syn.20712.
Carloni S, Mazzoni E, Balduini W: Caspase-3 and calpain activities after acute and repeated ethanol administration during the rat brain growth spurt. J Neurochem. 2004, 89: 197-203. 10.1111/j.1471-4159.2004.02341.x.
Olney JW, Tenkova T, Dikranian K, Muglia LJ, Jermakowicz WJ: Ethanol-induced caspase-3 activation in the in vivo developing mouse brain. Neurobiol Dis. 2002, 9: 205-219. 10.1006/nbdi.2001.0475.
Cory S, Adams JM: The Bcl-2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002, 2: 647-656. 10.1038/nrc883.
Roth KA, D'sa C: Apoptosis and brain development. Ment Ratard Dev Disabil Res. 2001, 7: 261-266. 10.1002/mrdd.1036.
Roy S: Caspase at the heart of the apoptotic cell death pathway. Chem Res Toxicol. 2000, l13: 961-962.
Heaton MB, Paiva M, Marsiglio KS: Ethanol influences on Bax translocation, mitochondrial membrane potential, and reactive oxygen species generation are modulated by vitamin E and brain-derived neurotrophic factor. Alcohol Clin Exp Res. 2011, 6: 1-12.
Nilsen J, Chen S, Irwin RW, Iwamoto S, Brinton RD: Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neuroscience. 2006, 7: 1-14. 10.1186/1471-2202-7-1.
Kahraman S, Zup LS, McCarthy MM, Fiskum G: GABAergic mechanism of profol toxicity in immature neurons. J Neurosurg Ansethesiol. 2008, 20: 233-240. 10.1097/ANA.0b013e31817ec34d.
Chong ZZ, Li F, Maiese K: Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog in Neurobiol. 2005, 75: 207-246. 10.1016/j.pneurobio.2005.02.004.
Mattson MP, Kroemer G: Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends in Mol Med. 2003, 9: 196-205. 10.1016/S1471-4914(03)00046-7.
Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wiernsperger N, Leverve X: Metformin prevents high glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes. 2005, 54: 2179-2187. 10.2337/diabetes.54.7.2179.
El-Mir MY, Dominique D, Gloria RV, Maria DE, Bruno G, Stephane A, Eric F, Angeles A, Xavier L: Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J Mol Neurosci. 2008, 34: 77-87. 10.1007/s12031-007-9002-1.
Houghton PJ, Zarka R, de las Heras B, Hoult JR: Fixed oil of nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med. 1995, 611: 33-6.
Nagi MN, Mansour MA: Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection. Pharmacol Res. 2000, 41: 283-289. 10.1006/phrs.1999.0585.
Mousavi SH, Tayarani-Najaran Z, Asghari M, Sadeghnia HR: Protective effect of nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death. Cell Mol Neurobiol. 2010, 30: 591-598. 10.1007/s10571-009-9484-1.
Kanter M: Nigella sativa and derived thymoquinone prevents hippocampal neurodegeneration after chronic toluene exposure in rats. Neurochem Res. 2008, 33: 579-588. 10.1007/s11064-007-9481-z.
Al-Majed AA, Al-Omar FA, Nagi MN: Neuroprotective effects of thymoquinone against transient forebrain Ischemia in the rat hippocampus. European Journal of Pharmacology. 2006, 543: 40-47. 10.1016/j.ejphar.2006.05.046.
Radad K, Moldzio R, Taha M, Rausch WD: Thymoquinone protects dopaminergic neurons against MPP+ and rotenone. Phytother Res. 2009, 23: 696-700. 10.1002/ptr.2708.
Naseer MI, Najeeb U, Ikram U, Zubair Hassan H, Yang MBC, Kim MO: Vitamin-C protects ethanol induced apoptotic neurodegeneration in postnatal rat brain. Pak J Med Sci. 2009, 25: 718-722.
Naseer MI, Lee HY, Kim MO: Neuroprotective effect of vitamin c against the ethanol and nicotine modulation of GABAB receptor and PKA-α expression in prenatal rat brain. Synapse. 2010, 64: 467-477. 10.1002/syn.20752.
Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X: Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997, 91: 479-489. 10.1016/S0092-8674(00)80434-1.
Berger NA: Poly (ADP-ribose) in the cellular response to DNA damage. Radiat Res. 1985, 101: 4-15. 10.2307/3576299.
Clarren SK, Smith DW: The fetal alcohol syndrome. New Engl J Med. 1978, 298: 1063-1067. 10.1056/NEJM197805112981906.
Lindsley TA, Kerlin AM, Rising LJ: Time-lapse analysis of ethanol's effects on axon growth in vitro. Dev Brain Res. 2003, 30: 191-199.
Miki T, Harris SJ, Wilce PA, Takeuchi Y, Bedi KS: Effects of alcohol exposure during early life on neuron numbers in the rat hippocampus, I. Hilus neurons and granule cells. Hippocampus. 2001, 13: 388-398.
Sakata-Haga H, Sawada K, Hisano S, Fukui Y: Administration schedule for an ethanol-containing diet in pregnancy affects types of offspring brain malformations. Acta Neuropathol. 2002, 104: 305-312.
Young C, Roth KA, Klocke BJ, West T, Holtzman DM, Labruyere J, Qin YQ, Dikranian K, Olney JW: Role of caspase-3 in ethanol-induced developmental neurodegeneration. Neurobiol Dis. 2005, 20: 608-614. 10.1016/j.nbd.2005.04.014.
Ramachandran V, Watts LT, Maffi SK, Chen J, Schenker S, Henderson G: Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons. J Neurosci Res. 2003, 74: 577-588. 10.1002/jnr.10767.
Antonio AM, Druse MJ: Antioxidants prevent ethanol-associated apoptosis in fetal rhombencephalic neurons. Brain Res. 2008, 1204: 16-23.
Nestler JE, Jakubowicz DJ, Evans WS, Pasquali R: Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. New Engl J Med. 1998, 338: 876-80.
Ippei K, Toru Y, Shozo Y, Mika Y, Toshitsugu S: Metformin enhances the differentiation and mineralization of osteoblastic MC3T3- E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem and Biophys Res Commun. 2008, 375: 414-419. 10.1016/j.bbrc.2008.08.034.
Zhou G, Myers R, Li Y, Chen Y, et al: Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001, 108: 1105-7.
Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005, 310: 1642-6. 10.1126/science.1120781.
Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG, Schlattner U: Activation of the AMP-activated protein kinase by the antidiabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem. 2004, 279: 43940-51. 10.1074/jbc.M404421200.
Martin TM, Benghuzzi H, Tucci M: The effect of conventional and sustained delivery of thymoqinone and levodopa on SH-SY5Y human neuroblastoma cells. Biomed Sci Instrum. 2006, 42: 332-337.
Badary OA, Nagi MN, Alshabana OA, AlShawaf HA, AlSohaibani MO, Al Bekairi AM: Thymoqinone ameliorates the nephrotoxicity induced by cisplatin in rodents and potentiates its antitumor activity. Can J Physiol Pharmacol. 1997, 75: 1356-1361. 10.1139/y97-169.
Simasko MS, Boyadjieva N, De A, Sarkar DK: Effect of ethanol on calcium regulation in rat fetal hypothalamic cells in culture. Brain Res. 1999, 824: 89-96. 10.1016/S0006-8993(99)01188-9.
Xiao ZM, Li LJ, Yu SZ, Li CY, Zheng JQ: Effects of extracellular Ca2+ influx and intracellular Ca2+ release on ethanol-induced cytoplasm Ca2+ overload in cultured superior cervical ganglion neurons. Neuroscience Letters. 2005, 390: 98-103. 10.1016/j.neulet.2005.08.004.
Shy Y: A structural view of mitochondria-mediated apoptosis. Nat Struct Biol. 2001, 8: 394-401. 10.1038/87548.
Merry DE, Korsmeyer SJ: Bcl-2 gene family in the nervous system. Annu Rev Neurosci. 1997, 20: 245-267. 10.1146/annurev.neuro.20.1.245.
Kim MY, Zhang T, Kraus WL: Pol(ADP-ribosyl)ation by PARP-1:PAR-laying NAD in to nuclear signal. Genes Dev. 2005, 19: 1951-1967. 10.1101/gad.1331805.
Cherian PP, Schenker S, Henderson GI: Ethanol-mediated DNA damage and PARP-1 apoptotic responses in cultured fetal cortical neurons. Alcohol Clin Exp Res. 2008, 32: 1-9.
Malgaroli A, Milani D, Meldolesi J, Pozzan T: Fura-2 measurement of cytosolic free Ca+2 in monolayers and suspensions of various types of animal cells. J Cell Biol. 1987, 105: 2145-2155. 10.1083/jcb.105.5.2145.
Grynkyewicz G, Poenie M, Tsien RY: A new generation of Ca+2 indicators with greatly improved fluorescence properties. J Biol Chem. 1985, 260: 3440-3450.
Reers M, Smith TW, Chen LB: J-aggregate formation of a carbocyanine as a quantitative fluorescencet indicator of membrane potential. Biochemistry. 1991, 30: 4480-4486. 10.1021/bi00232a015.
Naseer MI, Li S, Kim MO: Maternal epileptic seizure induced by pentylenetetrazol: apoptotic neurodegeneration and decreased GABAB1 receptor expression in prenatal rat brain. Mol Brain. 2009, 2: 1-20. 10.1186/1756-6606-2-1.