Neurons with names: Descending control and sensorimotor processing in insect motor control

Current Opinion in Neurobiology - Tập 83 - Trang 102766 - 2023
Ansgar Büschges1, E. Axel Gorostiza1
1Institute of Zoology, Biocenter Cologne, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany

Tài liệu tham khảo

Orlovsky, 1999 Hooper, 2017 Matthews, 2009 Mantziaris, 2020, Central pattern generating networks in insect locomotion, Dev Neurobiol, 80, 16, 10.1002/dneu.22738 Tuthill, 2016, Mechanosensation and adaptive motor control in insects, Curr Biol, 26, R1022, 10.1016/j.cub.2016.06.070 Whelan, 2020 Hsu, 2016, Organization of descending neurons in Drosophila melanogaster, Sci Rep, 6, 20259, 10.1038/srep20259 Namiki, 2018, The functional organization of descending sensory-motor pathways in, Elife, 7, 10.7554/eLife.34272 Okada, 2003, Distribution of dendrites of descending neurons and its implications for the basic organization of the cockroach brain, J Comp Neurol, 458, 158, 10.1002/cne.10580 Liu, 2023, Distribution and organization of descending neurons in the brain of adult (Insecta), Insects, 14 Staudacher, 1998, Distribution and morphology of descending brain neurons in the cricket gryllus bimaculatus, Cell Tissue Res, 294, 187, 10.1007/s004410051169 Cande, 2018, Optogenetic dissection of descending behavioral control in Drosophila, Elife, 7, 10.7554/eLife.34275 Hale, 2016, Neural circuits that drive startle behavior, with a focus on the Mauthner cells and spiral fiber neurons of fishes, J Neurogenet, 30, 89, 10.1080/01677063.2016.1182526 von Reyn, 2014, A spike-timing mechanism for action selection, Nat Neurosci, 17, 962, 10.1038/nn.3741 Dombrovski, 2023, Synaptic gradients transform object location to action, Nature, 613, 534, 10.1038/s41586-022-05562-8 Namiki, 2022, A population of descending neurons that regulates the flight motor of Drosophila, Curr Biol, 32, 1189, 10.1016/j.cub.2022.01.008 Schnell, 2017, A descending neuron correlated with the rapid steering maneuvers of flying Drosophila, Curr Biol, 27, 1200, 10.1016/j.cub.2017.03.004 Suver, 2016, An array of descending visual interneurons encoding self-motion in Drosophila, J Neurosci, 36, 11768, 10.1523/JNEUROSCI.2277-16.2016 Ache, 2019, State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila, Nat Neurosci, 22, 1132, 10.1038/s41593-019-0413-4 Seeds, 2014, A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila, Elife, 3, 10.7554/eLife.02951 Hampel, 2015, A neural command circuit for grooming movement control, Elife, 4, 10.7554/eLife.08758 Guo, 2022, Descending neurons coordinate anterior grooming behavior in Drosophila, Curr Biol, 32, 823, 10.1016/j.cub.2021.12.055 von Philipsborn, 2011, Neuronal control of Drosophila courtship song, Neuron, 69, 509, 10.1016/j.neuron.2011.01.011 McKellar, 2019, Threshold-based ordering of sequential actions during Drosophila courtship, Curr Biol, 29, 426, 10.1016/j.cub.2018.12.019 Wang, 2020, Neural circuitry linking mating and egg laying in Drosophila females, Nature, 579, 101, 10.1038/s41586-020-2055-9 Mezzera, 2020, Ovipositor extrusion promotes the transition from courtship to copulation and signals female acceptance in Drosophila melanogaster, Curr Biol, 30, 3736, 10.1016/j.cub.2020.06.071 Wang, 2020, Circuit and behavioral mechanisms of sexual rejection by Drosophila females, Curr Biol, 30, 3749, 10.1016/j.cub.2020.07.083 Bidaye, 2014, Neuronal control of Drosophila walking direction, Science, 344, 97, 10.1126/science.1249964 Lee, 2021, A locomotor neural circuit persists and functions similarly in larvae and adult, Elife, 10 Zacarias, 2018, Speed dependent descending control of freezing behavior in Drosophila melanogaster, Nat Commun, 9, 3697, 10.1038/s41467-018-05875-1 Bidaye, 2020, Two brain pathways initiate distinct forward walking programs in Drosophila, Neuron, 108, 469, 10.1016/j.neuron.2020.07.032 Aymanns, 2022, Descending neuron population dynamics during odor-evoked and spontaneous limb-dependent behaviors, Elife, 11 Büschges, 2011, New moves in motor control, Curr Biol, 21, R513, 10.1016/j.cub.2011.05.029 Owald, 2015, Light, heat, action: neural control of fruit fly behaviour, Philos Trans R Soc Lond B Biol Sci, 370, 10.1098/rstb.2014.0211 Yamamoto, 2014, Neuroethology of male courtship in Drosophila: from the gene to behavior, J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 200, 251, 10.1007/s00359-014-0891-5 Schilcher, 1976, The function of pulse song and sine song in the courtship of Drosophila melanogaster, Anim Behav, 24, 622, 10.1016/S0003-3472(76)80076-0 Bennet-Clark, 1969, Pulse interval as a critical parameter in the courtship song of Drosophila melanogaster, Anim Behav, 17, 755, 10.1016/S0003-3472(69)80023-0 Kyriacou, 1982, The function of courtship song rhythms in Drosophila, Anim Behav, 30, 794, 10.1016/S0003-3472(82)80152-8 Bidaye, 2018, Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms, J Neurophysiol, 119, 459, 10.1152/jn.00658.2017 Grillner, 2021, The CPGs for limbed locomotion-facts and fiction, Int J Mol Sci, 22 Büschges, 1994, Identified nonspiking interneurons in leg reflexes and during walking in the stick insect, J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 174 von Uckermann, 2009, Premotor interneurons in the local control of stepping motor output for the stick insect single middle leg, J Neurophysiol, 102, 1956, 10.1152/jn.00312.2009 Wolf, 1995, Nonspiking local interneurons in insect leg motor control. II. Role of nonspiking local interneurons in the control of leg swing during walking, J Neurophysiol, 73, 1861, 10.1152/jn.1995.73.5.1861 Feng, 2020, Distributed control of motor circuits for backward walking in Drosophila, Nat Commun, 11, 6166, 10.1038/s41467-020-19936-x Zill, 2004, Load sensing and control of posture and locomotion, Arthropod Struct Dev, 33, 273, 10.1016/j.asd.2004.05.005 Bässler, 1965, Propriozeptoren am Subcoxal- und Femur-Tibia-Gelenk der Stabheuschrecke Carausius morosus, und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung, Kybernetik, 2, 168, 10.1007/BF00272314 Field, 1998, Chordotonal organs of insects, 1, 10.1016/S0065-2806(08)60013-2 Büschges, 1990, Nonspiking pathways in a joint-control loop of the stick insect Carausius morosus, J Exp Biol, 151, 133, 10.1242/jeb.151.1.133 Burrows, 1988, Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg, J Neurosci, 8, 3085, 10.1523/JNEUROSCI.08-08-03085.1988 Bässler, 1993, The femur-tibia control system of stick insects--a model system for the study of the neural basis of joint control, Brain Res Brain Res Rev, 18, 207, 10.1016/0165-0173(93)90002-H Sauer, 1996, Distributed processing on the basis of parallel and antagonistic pathways simulation of the femur-tibia control system in the stick insect, J Comput Neurosci, 3, 179, 10.1007/BF00161131 Lockery, 1990, Distributed processing of sensory information in the leech. I. Input-output relations of the local bending reflex, J Neurosci, 10, 1811, 10.1523/JNEUROSCI.10-06-01811.1990 Lockery, 1990, Distributed processing of sensory information in the leech. II. Identification of interneurons contributing to the local bending reflex, J Neurosci, 10, 1816, 10.1523/JNEUROSCI.10-06-01816.1990 Schmitz, 2000, Convergence of load and movement information onto leg motoneurons in insects, J Neurobiol, 42, 424, 10.1002/(SICI)1097-4695(200003)42:4<424::AID-NEU4>3.0.CO;2-0 Gebehart, 2021, Distributed processing of load and movement feedback in the premotor network controlling an insect leg joint, J Neurophysiol, 125, 1800, 10.1152/jn.00090.2021 Gebehart, 2021, Temporal differences between load and movement signal integration in the sensorimotor network of an insect leg, J Neurophysiol, 126, 1875, 10.1152/jn.00399.2021 Gebehart, 2022, Non-linear multimodal integration in a distributed premotor network controls proprioceptive reflex gain in the insect leg, Curr Biol, 32, 3847, 10.1016/j.cub.2022.07.005 Lacin, 2016, Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system, Elife, 5, 10.7554/eLife.13399 Talay, 2017, Transsynaptic mapping of second-order taste neurons in flies by trans-tango, Neuron, 96, 783, 10.1016/j.neuron.2017.10.011 Phelps, 2021, Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy, Cell, 184, 759, 10.1016/j.cell.2020.12.013 Mamiya, 2018, Neural coding of leg proprioception in Drosophila, Neuron, 100, 636, 10.1016/j.neuron.2018.09.009 Agrawal, 2020, Central processing of leg proprioception in, Elife, 9, 10.7554/eLife.60299 Chen, 2021, Functional architecture of neural circuits for leg proprioception in Drosophila, Curr Biol, 31, 5163, 10.1016/j.cub.2021.09.035 Pearson, 2006, Assessing sensory function in locomotor systems using neuro-mechanical simulations, Trends Neurosci, 29, 625, 10.1016/j.tins.2006.08.007 Schilling, 2020, Decentralized control of insect walking: a simple neural network explains a wide range of behavioral and neurophysiological results, PLoS Comput Biol, 16, 10.1371/journal.pcbi.1007804 Ekeberg, 2004, Dynamic simulation of insect walking, Arthropod Struct Dev, 33, 287, 10.1016/j.asd.2004.05.002 Chockley, 2022, Subsets of leg proprioceptors influence leg kinematics but not interleg coordination in Drosophila melanogaster walking, J Exp Biol, 225 Santuz, 2019, Modular organization of murine locomotor pattern in the presence and absence of sensory feedback from muscle spindles, J Physiol, 597, 3147, 10.1113/JP277515