Neuronal territory formation by the atypical cadherins and clustered protocadherins

Seminars in Cell & Developmental Biology - Tập 69 - Trang 111-121 - 2017
Julie L. Lefebvre

Tài liệu tham khảo

Gul, 2017, Evolution and diversity of cadherins and catenins, Exp. Cell Res., 358, 3, 10.1016/j.yexcr.2017.03.001 Halbleib, 2006, Cadherins in development: cell adhesion, sorting, and tissue morphogenesis, Genes. Dev., 20, 3199, 10.1101/gad.1486806 Hirano, 2012, Cadherins in brain morphogenesis and wiring, Physiol. Rev., 92, 597, 10.1152/physrev.00014.2011 Basu, 2015, The classic cadherins in synaptic specificity, Cell Adhes. Migrat., 9, 193, 10.1080/19336918.2014.1000072 Hadjantonakis, 1997, Celsr1, a neural-specific gene encoding an unusual seven-pass transmembrane receptor, maps to mouse chromosome 15 and human chromosome 22qter, Genomics, 45, 97, 10.1006/geno.1997.4892 Usui, 1999, Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled, Cell, 98, 585, 10.1016/S0092-8674(00)80046-X Chae, 1999, The Drosophila tissue polarity gene starry night encodes a member of the protocadherin family, Development, 126, 5421, 10.1242/dev.126.23.5421 Sano, 1993, Protocadherins: a large family of cadherin-related molecules in central nervous system, EMBO J., 12, 2249, 10.1002/j.1460-2075.1993.tb05878.x Kohmura, 1998, Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex, Neuron, 20, 1137, 10.1016/S0896-6273(00)80495-X Wu, 1999, A striking organization of a large family of human neural cadherin-like cell adhesion genes, Cell, 97, 779, 10.1016/S0092-8674(00)80789-8 Esumi, 2005, Monoallelic yet combinatorial expression of variable exons of the protocadherin-alpha gene cluster in single neurons, Nat. Genet., 37, 171, 10.1038/ng1500 Kaneko, 2006, Allelic gene regulation of Pcdh-alpha and Pcdh-gamma clusters involving both monoallelic and biallelic expression in single Purkinje cells, J. Biol. Chem., 281, 30551, 10.1074/jbc.M605677200 Yagi, 2012, Molecular codes for neuronal individuality and cell assembly in the brain, Front. Mol. Neurosci., 5, 45, 10.3389/fnmol.2012.00045 Tasic, 2002, Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing, Mol. Cell, 10, 21, 10.1016/S1097-2765(02)00578-6 Wang, 2002, Molecular mechanisms governing Pcdh-gamma gene expression: evidence for a multiple promoter and cis-alternative splicing model, Genes. Dev., 16, 1890, 10.1101/gad.1004802 Kaneko, 2014, Expansion of stochastic expression repertoire by tandem duplication in mouse Protocadherin-alpha cluster, Sci. Rep., 4, 6263, 10.1038/srep06263 Guo, 2012, CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter choice, Proc. Natl. Acad. Sci. U. S. A., 109, 21081, 10.1073/pnas.1219280110 Monahan, 2012, Role of CCCTC binding factor (CTCF) and cohesin in the generation of single-cell diversity of protocadherin-alpha gene expression, Proc. Natl. Acad. Sci. U. S. A., 109, 9125, 10.1073/pnas.1205074109 Hirayama, 2012, CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons, Cell Rep., 2, 345, 10.1016/j.celrep.2012.06.014 Toyoda, 2014, Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity, Neuron, 82, 94, 10.1016/j.neuron.2014.02.005 Jiang, 2017, The methyltransferase SETDB1 regulates a large neuron-specific topological chromatin domain, Nat. Genetic., 49, 1239, 10.1038/ng.3906 Hirayama, 2017, Regulation of clustered protocadherin genes in individual neurons, Semin. Cell Dev. Biol., 69, 122, 10.1016/j.semcdb.2017.05.026 Hasegawa, 2012, Constitutively expressed Protocadherin-alpha regulates the coalescence and elimination of homotypic olfactory axons through its cytoplasmic region, Front. Mol. Neurosci., 5, 97, 10.3389/fnmol.2012.00097 Mountoufaris, 2017, Multicluster Pcdh diversity is required for mouse olfactory neural circuit assembly, Science, 356, 411, 10.1126/science.aai8801 Chen, 2017, Pcdhalphac2 is required for axonal tiling and assembly of serotonergic circuitries in mice, Science, 356, 406, 10.1126/science.aal3231 Schreiner, 2010, Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion, Proc. Natl. Acad. Sci. U. S. A., 107, 14893, 10.1073/pnas.1004526107 Thu, 2014, Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins, Cell, 158, 1045, 10.1016/j.cell.2014.07.012 Han, 2010, Proteomics analysis reveals overlapping functions of clustered protocadherins, Mol. Cell. Proteom.: MCP, 9, 71, 10.1074/mcp.M900343-MCP200 Schalm, 2010, Phosphorylation of protocadherin proteins by the receptor tyrosine kinase Ret, Proc. Natl. Acad. Sci. U. S. A., 107, 13894, 10.1073/pnas.1007182107 Hasegawa, 2016, Distinct and cooperative functions for the protocadherin-alpha, −beta and −gamma clusters in neuronal survival and axon targeting, Front. Mol. Neurosci., 9, 155, 10.3389/fnmol.2016.00155 Rubinstein, 2015, Molecular logic of neuronal self-recognition through protocadherin domain interactions, Cell, 163, 629, 10.1016/j.cell.2015.09.026 Goodman, 2016, Structural basis of diverse homophilic recognition by clustered alpha- and beta-protocadherins, Neuron, 90, 709, 10.1016/j.neuron.2016.04.004 Goodman, 2016, gamma-Protocadherin structural diversity and functional implications, eLife, 5, 10.7554/eLife.20930 Nicoludis, 2015, Structure and sequence analyses of clustered protocadherins reveal antiparallel interactions that mediate homophilic specificity, Structure, 23, 2087, 10.1016/j.str.2015.09.005 Nicoludis, 2016, Antiparallel protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1–4, eLife, 5, 10.7554/eLife.18449 Wang, 2002, Gamma protocadherins are required for survival of spinal interneurons, Neuron, 36, 843, 10.1016/S0896-6273(02)01090-5 Weiner, 2005, Gamma protocadherins are required for synaptic development in the spinal cord, Proc. Natl. Acad. Sci. U. S. A., 102, 8, 10.1073/pnas.0407931101 Prasad, 2008, A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-gamma gene cluster, Development, 135, 4153, 10.1242/dev.026807 Lefebvre, 2008, gamma-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina, Development, 135, 4141, 10.1242/dev.027912 Chen, 2012, Functional significance of isoform diversification in the protocadherin gamma gene cluster, Neuron, 75, 402, 10.1016/j.neuron.2012.06.039 Grueber, 2010, Self-avoidance and tiling: mechanisms of dendrite and axon spacing, Cold Spring Harbor Perspect. Biol., 2, a001750, 10.1101/cshperspect.a001750 Lefebvre, 2015, Development of dendritic form and function, Annu. Rev. Cell Dev. Biol., 31, 741, 10.1146/annurev-cellbio-100913-013020 Wassle, 1981, Dendritic territories of cat retinal ganglion cells, Nature, 292, 344, 10.1038/292344a0 Wassle, 2009, Cone contacts, mosaics, and territories of bipolar cells in the mouse retina, J. Neurosci., 29, 106, 10.1523/JNEUROSCI.4442-08.2009 Lohmann, 2001, Cell-type specific dendritic contacts between retinal ganglion cells during development, J. Neurobiol., 48, 150, 10.1002/neu.1048 Grueber, 2003, Dendrites of distinct classes of Drosophila sensory neurons show different capacities for homotypic repulsion, Curr. Biol.: CB, 13, 618, 10.1016/S0960-9822(03)00207-0 Sugimura, 2003, Distinct developmental modes and lesion-induced reactions of dendrites of two classes of Drosophila sensory neurons, J. Neurosci., 23, 3752, 10.1523/JNEUROSCI.23-09-03752.2003 Gao, 1999, Genes regulating dendritic outgrowth, branching, and routing in Drosophila, Genes. Dev., 13, 2549, 10.1101/gad.13.19.2549 Gao, 2000, Control of dendritic field formation in Drosophila: the roles of flamingo and competition between homologous neurons, Neuron, 28, 91, 10.1016/S0896-6273(00)00088-X Sweeney, 2002, Genetic manipulation of single neurons in vivo reveals specific roles of flamingo in neuronal morphogenesis, Dev. Biol., 247, 76, 10.1006/dbio.2002.0702 Kimura, 2006, Potential dual molecular interaction of the Drosophila 7-pass transmembrane cadherin Flamingo in dendritic morphogenesis, J. Cell Sci., 119, 1118, 10.1242/jcs.02832 Wang, 2016, Epithelial microRNA-9a regulates dendrite growth through Fmi-Gq signaling in Drosophila sensory neurons, Dev. Neurobiol., 76, 225, 10.1002/dneu.22309 Lee, 2003, The protocadherin Flamingo is required for axon target selection in the Drosophila visual system, Nat. Neurosci., 6, 557, 10.1038/nn1063 Senti, 2003, Flamingo regulates R8 axon–axon and axon-target interactions in the Drosophila visual system, Curr. Biol.: CB, 13, 828, 10.1016/S0960-9822(03)00291-4 Chen, 2008, The cadherin Flamingo mediates level-dependent interactions that guide photoreceptor target choice in Drosophila, Neuron, 58, 26, 10.1016/j.neuron.2008.01.007 Schwabe, 2013, A network of cadherin-mediated interactions polarizes growth cones to determine targeting specificity, Cell, 154, 351, 10.1016/j.cell.2013.06.011 Hakeda-Suzuki, 2011, Golden Goal collaborates with Flamingo in conferring synaptic-layer specificity in the visual system, Nat. Neurosci., 14, 314, 10.1038/nn.2756 Mencarelli, 2015, Orthodenticle is required for the expression of principal recognition molecules that control axon targeting in the drosophila retina, PLoS Genet., 11, e1005303, 10.1371/journal.pgen.1005303 Shima, 2002, Differential expression of the seven-pass transmembrane cadherin genes Celsr1-3 and distribution of the Celsr2 protein during mouse development, Devel. Dyn., 223, 321, 10.1002/dvdy.10054 Tissir, 2002, Developmental expression profiles of Celsr (Flamingo) genes in the mouse, Mech. Dev., 112, 157, 10.1016/S0925-4773(01)00623-2 Curtin, 2003, Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse, Curr. Biol.: CB, 13, 1129, 10.1016/S0960-9822(03)00374-9 Tissir, 2005, Protocadherin Celsr3 is crucial in axonal tract development, Nat. Neurosci., 8, 451, 10.1038/nn1428 Zhou, 2008, Early forebrain wiring: genetic dissection using conditional Celsr3 mutant mice, Science, 320, 946, 10.1126/science.1155244 Feng, 2016, Celsr3 and fzd3 organize a pioneer neuron scaffold to steer growing thalamocortical axons, Cereb. Cortex, 26, 3323, 10.1093/cercor/bhw132 Shafer, 2011, Vangl2 promotes Wnt/planar cell polarity-like signaling by antagonizing Dvl1-mediated feedback inhibition in growth cone guidance, Dev. Cell, 20, 177, 10.1016/j.devcel.2011.01.002 Fenstermaker, 2010, Wnt/planar cell polarity signaling controls the anterior-posterior organization of monoaminergic axons in the brainstem, J. Neurosci., 30, 16053, 10.1523/JNEUROSCI.4508-10.2010 Hua, 2014, Frizzled3 is required for the development of multiple axon tracts in the mouse central nervous system, Proc. Natl. Acad. Sci. U. S. A., 111, E3005, 10.1073/pnas.1406399111 Qu, 2014, Genetic evidence that Celsr3 and Celsr2, together with Fzd3, regulate forebrain wiring in a Vangl-independent manner, Proc. Natl. Acad. Sci. U. S. A., 111, E2996, 10.1073/pnas.1402105111 Shima, 2004, Regulation of dendritic maintenance and growth by a mammalian 7-pass transmembrane cadherin, Dev. Cell, 7, 205, 10.1016/j.devcel.2004.07.007 Shima, 2007, Opposing roles in neurite growth control by two seven-pass transmembrane cadherins, Nat. Neurosci., 10, 963, 10.1038/nn1933 Zipursky, 2013, The molecular basis of self-avoidance, Annu. Rev. Neurosci., 36, 547, 10.1146/annurev-neuro-062111-150414 Kramer, 1983, Formation of the receptive fields of leech mechanosensory neurons during embryonic development, J. Neurosci., 3, 2474, 10.1523/JNEUROSCI.03-12-02474.1983 Kramer, 1985, Developmental arborization of sensory neurons in the leech Haementeria ghilianii. II. Experimentally induced variations in the branching pattern, J. Neurosci., 5, 768, 10.1523/JNEUROSCI.05-03-00768.1985 Matsubara, 2011, The seven-pass transmembrane cadherin Flamingo controls dendritic self-avoidance via its binding to a LIM domain protein, Espinas, in Drosophila sensory neurons, Genes. Dev., 25, 1982, 10.1101/gad.16531611 Zipursky, 2010, Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly, Cell, 143, 343, 10.1016/j.cell.2010.10.009 Barlow, 2002, Mammalian DSCAMs: roles in the development of the spinal cord, cortex, and cerebellum?, Biochem. Biophys. Res. Commun., 293, 881, 10.1016/S0006-291X(02)00307-8 Lefebvre, 2012, Protocadherins mediate dendritic self-avoidance in the mammalian nervous system, Nature, 488, 517, 10.1038/nature11305 Sdrulla, 2006, Dynamic imaging of cerebellar Purkinje cells reveals a population of filopodia which cross-link dendrites during early postnatal development, Cerebellum, 5, 105, 10.1080/14734220600620908 Fujishima, 2012, Principles of branch dynamics governing shape characteristics of cerebellar Purkinje cell dendrites, Development, 139, 3442, 10.1242/dev.081315 Gibson, 2014, Dendrite self-avoidance requires cell-autonomous slit/robo signaling in cerebellar purkinje cells, Neuron, 81, 1040, 10.1016/j.neuron.2014.01.009 Lee, 2006, The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells, Neuron, 51, 787, 10.1016/j.neuron.2006.08.007 Yoshida, 2001, A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement, Neuron, 30, 771, 10.1016/S0896-6273(01)00316-6 Kostadinov, 2015, Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function, eLife, 4, 10.7554/eLife.08964 Hasegawa, 2008, The protocadherin-alpha family is involved in axonal coalescence of olfactory sensory neurons into glomeruli of the olfactory bulb in mouse, Mol. Cell. Neurosci., 38, 66, 10.1016/j.mcn.2008.01.016 Katori, 2009, Protocadherin-alpha family is required for serotonergic projections to appropriately innervate target brain areas, J. Neurosci., 29, 9137, 10.1523/JNEUROSCI.5478-08.2009 Prasad, 2011, Direct and indirect regulation of spinal cord ia afferent terminal formation by the gamma-protocadherins, Front. Mol. Neurosci., 4, 54, 10.3389/fnmol.2011.00054 Gegonne, 2012, The general transcription factor TAF7 is essential for embryonic development but not essential for the survival or differentiation of mature T cells, Mol. Cell. Biol., 32, 1984, 10.1128/MCB.06305-11 Noguchi, 2009, Total expression and dual gene-regulatory mechanisms maintained in deletions and duplications of the Pcdha cluster, J. Biol. Chem., 284, 32002, 10.1074/jbc.M109.046938 Janusonis, 2017, Serotonin in space: understanding single fibers, ACS Chem. Neurosci., 8, 893, 10.1021/acschemneuro.6b00417 Cai, 2013, Improved tools for the Brainbow toolbox, Nat. Methods, 10, 540, 10.1038/nmeth.2450 Garrett, 2012, gamma-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway, Neuron, 74, 269, 10.1016/j.neuron.2012.01.028 Suo, 2012, Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase, J. Mol. Cell Biol., 4, 362, 10.1093/jmcb/mjs034 Molumby, 2016, Homophilic protocadherin cell-Cell interactions promote dendrite complexity, Cell Rep., 15, 1037, 10.1016/j.celrep.2016.03.093 Chen, 2009, alpha- and gamma-Protocadherins negatively regulate PYK2, J. Biol. Chem., 284, 2880, 10.1074/jbc.M807417200 Keeler, 2015, Protocadherins branch out: multiple roles in dendrite development, Cell Adhes. Migrat., 9, 214, 10.1080/19336918.2014.1000069 Keeler, 2015, Protein kinase c phosphorylation of a gamma-protocadherin C-terminal lipid binding domain regulates focal adhesion kinase inhibition and dendrite arborization, J. Biol. Chem., 290, 20674, 10.1074/jbc.M115.642306 Molumby, 2017, Gamma-protocadherins interact with neuroligin-1 and negatively regulate dendritic spine morphogenesis, Cell Rep., 18, 2702, 10.1016/j.celrep.2017.02.060 Sperry, 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. U. S. A., 50, 703, 10.1073/pnas.50.4.703 Borgel, 2010, Targets and dynamics of promoter DNA methylation during early mouse development, Nat. Genet., 42, 1093, 10.1038/ng.708 Golan-Mashiach, 2012, Identification of CTCF as a master regulator of the clustered protocadherin genes, Nucleic Acids Res., 40, 3378, 10.1093/nar/gkr1260 Yu, 2009, Specific synapses develop preferentially among sister excitatory neurons in the neocortex, Nature, 458, 501, 10.1038/nature07722 Yu, 2012, Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly, Nature, 486, 113, 10.1038/nature10958 Ohtsuki, 2012, Similarity of visual selectivity among clonally related neurons in visual cortex, Neuron, 75, 65, 10.1016/j.neuron.2012.05.023 Li, 2012, Clonally related visual cortical neurons show similar stimulus feature selectivity, Nature, 486, 118, 10.1038/nature11110 Tarusawa, 2016, Establishment of high reciprocal connectivity between clonal cortical neurons is regulated by the Dnmt3b DNA methyltransferase and clustered protocadherins, BMC Biol., 14, 103, 10.1186/s12915-016-0326-6 Chen, 2014, The WAVE regulatory complex links diverse receptors to the actin cytoskeleton, Cell, 156, 195, 10.1016/j.cell.2013.11.048 Karaca, 2015, Genes that affect brain structure and function identified by rare variant analyses of mendelian neurologic disease, Neuron, 88, 499, 10.1016/j.neuron.2015.09.048 Vilboux, 2017, CELSR2, encoding a planar cell polarity protein, is a putative gene in Joubert syndrome with cortical heterotopia, microophthalmia, and growth hormone deficiency, Am. J. Med. Genet. A, 173, 661, 10.1002/ajmg.a.38005 Anitha, 2013, Protocadherin alpha (PCDHA) as a novel susceptibility gene for autism, J. Psychiatry Neurosci., 38, 192, 10.1503/jpn.120058 Iossifov, 2012, De novo gene disruptions in children on the autistic spectrum, Neuron, 74, 285, 10.1016/j.neuron.2012.04.009 Sato, 2012, SHANK1 deletions in males with autism spectrum disorder, Am. J. Hum. Genet., 90, 879, 10.1016/j.ajhg.2012.03.017 Pedrosa, 2008, Analysis of protocadherin alpha gene enhancer polymorphism in bipolar disorder and schizophrenia, Schizophr. Res., 102, 210, 10.1016/j.schres.2008.04.013 Schizophrenia, 2014, Working Group of the Psychiatric Genomics, Biological insights from 108 schizophrenia-associated genetic loci, Nature, 511, 421, 10.1038/nature13595 Lennington, 2016, Transcriptome analysis of the human striatum in tourette syndrome, Biol. Psychiatry, 79, 372, 10.1016/j.biopsych.2014.07.018 Willsey, 2017, De novo coding variants are strongly associated with tourette disorder, Neuron, 94, 486, 10.1016/j.neuron.2017.04.024 Miyake, 2011, The protocadherins PCDHB1 and PCDH7, are regulated by MeCP2 in neuronal cells and brain tissues: implication for pathogenesis of Rett syndrome, BMC Neurosci., 12, 81, 10.1186/1471-2202-12-81 Strong, 2015, Symmetrical dose-dependent DNA-methylation profiles in children with deletion or duplication of 7q11.23, Am. J. Hum. Genet., 97, 216, 10.1016/j.ajhg.2015.05.019 El Hajj, 2016, Epigenetic dysregulation in the developing Down syndrome cortex, Epigenetics, 11, 563, 10.1080/15592294.2016.1192736 Mendioroz, 2015, Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models, Genome Biol., 16, 263, 10.1186/s13059-015-0827-6 McGowan, 2011, Broad epigenetic signature of maternal care in the brain of adult rats, PLoS One, 6, e14739, 10.1371/journal.pone.0014739 Suderman, 2012, Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus, Proc. Natl. Acad. Sci. U. S. A., 109, 17266, 10.1073/pnas.1121260109 Laufer, 2015, Associative DNA methylation changes in children with prenatal alcohol exposure, Epigenomics, 7, 1259, 10.2217/epi.15.60