Neuronal Gamma-Band Synchronization as a Fundamental Process in Cortical Computation

Annual Review of Neuroscience - Tập 32 Số 1 - Trang 209-224 - 2009
Pascal Fries1
1Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands

Tóm tắt

Neuronal gamma-band synchronization is found in many cortical areas, is induced by different stimuli or tasks, and is related to several cognitive capacities. Thus, it appears as if many different gamma-band synchronization phenomena subserve many different functions. I argue that gamma-band synchronization is a fundamental process that subserves an elemental operation of cortical computation. Cortical computation unfolds in the interplay between neuronal dynamics and structural neuronal connectivity. A core motif of neuronal connectivity is convergence, which brings about both selectivity and invariance of neuronal responses. However, those core functions can be achieved simultaneously only if converging neuronal inputs are functionally segmented and if only one segment is selected at a time. This segmentation and selection can be elegantly achieved if structural connectivity interacts with neuronal synchronization. I propose that this process is at least one of the fundamental functions of gamma-band synchronization, which then subserves numerous higher cognitive functions.

Từ khóa


Tài liệu tham khảo

10.1111/j.1460-9568.2004.03495.x

10.1073/pnas.130200797

10.1016/S0896-6273(02)01186-8

10.1038/nn960

10.1038/nrn2044

10.1523/JNEUROSCI.5228-04.2006

10.1126/science.1109676

10.1073/pnas.0502366102

10.1162/neco.2007.07-06-289

10.1523/JNEUROSCI.15-01-00047.1995

10.1152/jn.2002.87.6.2715

10.1152/jn.1998.80.6.2911

10.1523/JNEUROSCI.23-03-01013.2003

10.1093/acprof:oso/9780195301069.001.0001

10.1016/0013-4694(79)90033-6

10.1126/science.1128115

10.1093/brain/awf135

10.1523/JNEUROSCI.18-16-06395.1998

10.1016/0166-4328(95)00129-8

10.1038/363345a0

10.1016/S0896-6273(02)01169-8

10.1146/annurev.ne.18.030195.001205

10.1007/BF00202899

10.1126/science.252.5009.1177

10.1073/pnas.88.20.9136

10.1073/pnas.88.14.6048

10.1523/JNEUROSCI.19-23-10404.1999

10.1093/cercor/10.11.1105

10.1097/00001756-199411000-00017

10.1016/j.tics.2005.08.011

10.1126/science.1055465

10.1073/pnas.94.23.12699

10.1016/j.neuron.2008.04.020

10.1523/JNEUROSCI.22-09-03739.2002

10.1523/JNEUROSCI.4499-07.2008

10.1098/rstb.2005.1629

10.1523/JNEUROSCI.17-09-03239.1997

10.1038/338334a0

10.1073/pnas.86.5.1698

10.1371/journal.pbio.0050133

10.1016/j.neuroimage.2007.01.002

10.1016/j.neuron.2005.06.016

10.1523/JNEUROSCI.19-10-03992.1999

10.1016/j.neuroimage.2005.08.043

10.1007/BF01184793

10.1152/jn.1995.73.1.218

10.1046/j.1460-9568.2002.01975.x

10.1111/j.1460-9568.1993.tb00516.x

10.1016/S0166-2236(96)80019-1

10.1523/JNEUROSCI.16-07-02381.1996

10.1152/jn.00263.2005

10.1038/nrn964

10.1093/cercor/13.1.15

10.1093/cercor/10.11.1117

10.1093/cercor/bhl145

10.1073/pnas.0701826104

10.1523/JNEUROSCI.1227-08.2008

10.1523/JNEUROSCI.3948-07.2008

10.1126/science.272.5259.271

10.1038/379728a0

10.1016/S0306-4522(00)00584-4

10.1038/nn890

10.3758/BF03212254

10.1146/annurev.neuro.26.041002.131039

10.1523/JNEUROSCI.19-05-01736.1999

10.1073/pnas.0732061100

10.1523/JNEUROSCI.1839-04.2004

10.1152/jn.00158.2005

10.1017/S0952523801184038

10.1523/JNEUROSCI.2939-07.2007

10.1002/cne.903200402

10.1523/JNEUROSCI.20-16-06193.2000

10.1038/35086012

10.1126/science.1107027

10.1073/pnas.94.7.3408

10.1523/JNEUROSCI.21-04-01340.2001

10.1016/S0896-6273(00)80821-1

10.1146/annurev.ne.18.030195.003011

10.1038/36335

10.1093/cercor/bhi023

10.1162/0899766054796905

10.1002/hipo.1041

10.1016/j.jphysparis.2005.09.002

10.1016/j.expneurol.2006.01.012

10.1523/JNEUROSCI.0630-08.2008

10.1016/j.neuron.2005.11.036

10.1038/384162a0

10.1002/hipo.10082

10.1038/nature04258

10.1126/science.1139597

10.1523/JNEUROSCI.4748-07.2008