Sự Đa Dạng Chức Năng của Neuron và Các Hành Vi Tập Thể

Journal of Biological Physics - Tập 34 - Trang 267-278 - 2008
Walter G. Sannita1,2
1Department of Motor Sciences, University of Genova, Genova, Italy
2Department of Psychiatry, State University of New York, Stony Brook, USA

Tóm tắt

Một câu hỏi lớn trong lĩnh vực khoa học thần kinh ngày nay là cách mà các hoạt động và tổ chức phức tạp của não bộ xuất hiện từ các thành phần cá nhân. Sự bền vững của các thuộc tính neuron với những liên kết linh hoạt giữa các quá trình điều tiết có thể giải thích cho động lực thích ứng, có thể điều chỉnh, đa ổn định; các sơ đồ mã hóa; và sự phức tạp của các (tiểu) hệ thống chức năng neuron. Các tế bào trung gian và sự đa dạng của các chất dẫn truyền thần kinh, các hiện tượng cộng hưởng do các thuộc tính của tế bào, sự kích hoạt phụ thuộc thời gian/tần số của các tập hợp neuron chuyên biệt, và các dao động phụ thuộc vào mã và tần số tương tác trong việc xác định cấu trúc và hoạt động chức năng của não. Một sắp xếp như vậy cũng sẽ cung cấp các yêu cầu chức năng để truy cập vào các cơ chế thần kinh, các mạch neuron chuyên dụng và thời gian chính xác cho phép phân biệt chọn lọc giữa các neuron vỏ não do thực hiện các nhiệm vụ khác nhau. Chưa có lý thuyết toàn diện hoặc phương pháp tiếp cận hệ thống nào được tưởng tượng ra. Tuy nhiên, kịch bản này, mặc dù không đầy đủ và chưa được mô tả hoàn chỉnh, vẫn đầy hứa hẹn và đáng được điều tra thêm.

Từ khóa

#neuron #sự đa dạng chức năng #hành vi tập thể #khoa học thần kinh #mạch neuron #chất dẫn truyền thần kinh

Tài liệu tham khảo

Stevens, C.F.: An evolutionary scaling law for the primate visual system and its basis in cortical function. Nature 411, 193–195 (2001). doi:10.1038/35075572 Nieuwenhuys, R.: The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat. Embryol. (Berl.) 190, 307–337 (1984) Marín-Padilla, M.: Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J. Comp. Neurol. 321, 223–240 (1992). doi:10.1002/cne.903210205 Pakkenberg, B., Pelvig, D., Marner, L., Bundgaard, M.J., Gundersen, H.J., Nyengaard, J.R., Regeur, L.: Aging and the human neocortex. Exp. Gerontol. 38, 95–99 (2003). doi:10.1016/S0531-5565(02)00151-1 Marquardt, T., Gruss, P.: Generating neuronal diversity in the retina: one for nearly all. Trends Neurosci. 25, 32–38 (2002). doi:10.1016/S0166-2236(00)02028-2 Gross, C.G.: Genealogy of the “grandmother cell”. Neuroscientist 8, 512–518 (2002) Barlow, H.B.: Single units and cognition: a neurone doctrine for perceptual psychology. Perception 1, 371–394 (1972). doi:10.1068/p010371 Koch, C., Segev, I.: The role of single neurons in information processing. Nat. Neurosci. 3, 1171–1177 (2000). doi:10.1038/81444 Reddy, L., Quiroga, R.Q., Wilken, P., Koch, C., Fried, I.: A single-neuron correlate of change detection and change blindness in the human medial temporal lobe. Curr. Biol. 16, 2066–2072 (2006). doi:10.1016/j.cub.2006.08.064 Hebb, D.O.: Organization of Behavior. Wiley, New York (1949) Changizi, M.A., Shimojo, S.: Parcellation and area-area connectivity as a function of neocortex size. Brain Behav. Evol. 66, 88–98 (2005). doi:10.1159/000085942 Braitenberg, V.: Brain size and number of neurons: an exercise in synthetic neuroanatomy. Comput. Neurosci. 10, 71–77 (2001). doi:10.1023/A:1008920127052 Braitenberg, V.: Cell assemblies in the cerebral cortex. In: Heim, R., Palm, G. (eds.) Theoretical Approaches to Complex Systems, Lecture Notes in Biomathematics 21, pp. 171–188. Springer, Berlin (1978) Douglas, R.J., Martin, K.A.: Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004). doi:10.1146/annurev.neuro.27.070203.144152 Buzsaki, G., Llinás, R.R., Singer, W., Berthoz, A., Christen, Y. (eds.): Temporal Coding in the Brain. Springer, Berlin (1994) Buzsaki, G., Geisler, C., Henze, D.A., Wang, X.Y.: Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27, 186–193 (2004). doi:10.1016/j.tins.2004.02.007 Tononi, G., Edelman, G.M.: Consciousness and complexity. Science 282, 1846–1851 (1998). doi:10.1126/science.282.5395.1846 Koch, C., Laurent, G.: Complexity and the nervous system. Science 284, 96–98 (1999). doi:10.1126/science.284.5411.96 Maccaferri, G., Lacaille, J.C.: Interneuron diversity series: Hippocampal interneuron classification—making things as simple as possible, not simpler. Trends Neurosci. 26, 564–571 (1993). doi:10.1016/j.tins.2003.08.002 Gupta, A., Wang, Y., Markram, H.: Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000). doi:10.1126/science.287.5451.273 Allman, J.M.: Evolving Brains. Scientific American Library, WH Freeman, New York (1998) Changizi, M.A.: The Brain from 25,000 Feet. High Level Exploration of Brain Complexity, Perception, Induction and Vagueness. Kluwer, Amsterdam (2003) Hutcheon, B., Yarom, Y.: Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci. 23, 216–222 (2000). doi:10.1016/S0166-2236(00)01547-2 Hutcheon, B., Miura, R.M., Puil, E.: Subthreshold membrane resonance in neocortical neurons. J. Neurophysiol. 76, 683–697 (1996) Friston, K.J.: Another neural code? Neuroimage 5, 213–220 (1997). doi:10.1006/nimg.1997.0260 Troyer, T.W.: Factors affecting phase synchronization in integrate-and-fire oscillators. J. Comput. Neurosci. 20, 191–200 (2006) Neuenschwander, S., Singer, W.: Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379, 728–732 (1996). doi:10.1038/379728a0 Cattaneo, A., Maffei, L., Morrone, C.: Two firing patterns in the discharge of complex cells encoding different attributes of the visual stimulus. Exp. Brain Res. 43, 115–118 (1981). doi:10.1007/BF00238819 Optican, L.M., Richmond, B.J.: Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. J. Neurophysiol. 57, 162–178 (1987) Krüger, J., Becker, J.D.: Recognizing the visual stimulus from neuronal discharges. Trends Neurosci. 14, 282–286 (1991). doi:10.1016/0166-2236(91)90138-K Engel, A.K., König, P., Kreiter, A.K., Schillen, T.B., Singer, W.: Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci. 15, 218–226 (1992). doi:10.1016/0166-2236(92)90039-B Riehle, A., Grün, S., Diesmann, M., Aertsen, A.: Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950–1953 (1997). doi:10.1126/science.278.5345.1950 Biederlack, J., Castelo-Branco, M., Neuenschwander, S., Wheeler, D.W., Singer, W., Nikolić, D.: Brightness induction: rate enhancement and neuronal synchronization as complementary codes. Neuron 52, 1073–1083 (2006). doi:10.1016/j.neuron.2006.11.012 Leutgeb, S., Leutgeb, J.K., Barnes, C.A., More, E.L., McNaughton, B.L., Moser, M.: Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309, 619–623 (2005). doi:10.1126/science.1114037 Llinás, R.R.: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988). doi:10.1126/science.3059497 Bressler, S.L.: The gamma wave: a cortical information carrier. Trends Neurosci. 13, 161–162 (1990). doi:10.1016/0166-2236(90)90039-D Steriade, M., Amzica, F., Contreras, D.: Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J. Neurosci. 16, 392–417 (1996) Engel, A.K., König, P., Kreiter, A.K., Gray, C.M., Singer, W.: Temporal coding by coherent oscillations as a potential solution to the binding problem: physiological evidence. In: Shuster, H.G. (ed.) Nonlinear Dynamics and Neuronal Networks. VCH Verlagsgesellschaft, Weinheim (1991) Engel, A.K., König, P., Singer, W.: Direct physiological evidence for scene segmentation by temporal coding. Proc. Natl. Acad. Sci. U. S. A. 88, 9136–9140 (1991). doi:10.1073/pnas.88.20.9136 Singer, W.: Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, 349–374 (1993). doi:10.1146/annurev.ph.55.030193.002025 Singer, W., Gray, C.M.: Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995). doi:10.1146/annurev.ne.18.030195.003011 Sannita, W.G., Conforto, S., Lopez, L., Narici, L.: Synchronized 15.0–35.0 Hz oscillatory response to spatially modulated visual patterns in man. Neuroscience 89, 619–623 (1999). doi:10.1016/S0306-4522(98)00613-7 Sannita, W.G., Bandini, F., Beelke, M., Carozzo, S., Gesino, D., Mazzella, L., Ogliastro, C., Narici, L.: Time dynamics and stimulus- and event-related gamma band activity: contrast-VEPs and the visual p300 in man. Clin. Neurophysiol. 112, 2241–2249 (2001). doi:10.1016/S1388-2457(01)00700-3 Laurent, G.: Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci. 19, 489–496 (1996). doi:10.1016/S0166-2236(96)10054-0 Gray, C.M.: The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 31, 111–125 (1999) Sannita, W.G.: Stimulus-specific oscillatory responses of the brain: a time/frequency related coding system. Clin. Neurophysiol. 111, 565–583 (2000). doi:10.1016/S1388-2457(99)00271-0 Sannita, W.G.: Oscillatory responses and gamma activity. In: Celesia, G.G. (ed.) Disorders of Visual Processing, Daube, J, Mauguire, F. (series eds.), Handbook of Clinical Neurophysiology, vol. 6, pp. 131–141. Elsevier, Amsterdam (2005) Basar, E., Bullock, T. (eds.): Induced Rhythmicities in the Brain. Birkhauser, Boston (1992) Izhikevich, E.M., Desai, N.S., Walcott, E.C., Hoppensteadt, F.C.: Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci. 26, 161–167 (2003). doi:10.1016/S0166-2236(03)00034-1 Maex, R., De Schutter, E.: Resonant synchronization in heterogeneous networks of inhibitory neurons. J. Neurosci. 23, 10503–10514 (2003) Lisman, J.E.: Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20, 38–42 (1997). doi:10.1016/S0166-2236(96)10070-9 Ryan, L.J.: Signal-to-noise in neuromodulation. Trends Neurosci. 12, 494 (1989). doi:10.1016/0166-2236(89)90105-7 Nowak, L.G., Munk, M.H., Nelson, J.I., James, A.C., Bullier, J.: Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J. Neurophysiol. 74, 2379–2400 (1995) Azouz, R., Gray, C.M.: Adaptive coincidence detection and dynamic gain control in visual cortical neurons in vivo. Neuron 37, 513–523 (2003). doi:10.1016/S0896-6273(02)01186-8 Svirskis, G., Rinzel, J.: Influence of subthreshold nonlinearities on signal-to-noise ratio and timing precision for small signals in neurons: minimal model analysis. Network 14, 137–150 (2003) Sannita, W.G.: Individual variability, end-point effects and possible biases in electrophysiological research. Clin. Neurophysiol. 117, 2569–2583 (2006). doi:10.1016/j.clinph.2006.04.026 Brunel, N., Hansel, D.: How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput. 18, 1066–1110 (2006). doi:10.1162/neco.2006.18.5.1066 Traynelis, S.F., Jaramillo, F.: Getting the most out of noise in the cerebral nervous system. Trends Neurosci. 21, 137–145 (1998). doi:10.1016/S0166-2236(98)01238-7 White, J.A., Klink, R., Alonso, A., Kay, A.R.: Noise from voltage-gated ion channels may influence dynamics in the enthorinal cortex. J. Neurophysiol. 80, 262–269 (1998) Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995). doi:10.1038/373033a0 Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–288 (1998). doi:10.1103/RevModPhys.70.223 Moss, F., Ward, L., Sannita, W.G.: Stochastic resonance and sensory information processing: a tutorial and review of application. Clin. Neurophysiol. 115, 267–281 (2004). doi:10.1016/j.clinph.2003.09.014 Bezrukov, S.M., Vodyanoy, I.: Noise-induced enhancement of signal transduction across voltage dependent ion channels. Nature 378, 362–364 (1995). doi:10.1038/378362a0 Gluckman, B.J., Netoff, T.I., Neel, E.J., Ditto, W.L., Spano, M.L., Schiff, S.J.: Stochastic resonance in a neuronal network from mammalian brain. Phys. Rev. Lett. 77, 4098–4101 (1996) Cohen, A.L., Shiffrin, R.M., Gold, J.M., Ross, D.A., Ross, M.G.: Inducing features from visual noise. J. Vis. 7, 1–14 (2007). doi:10.1167/7.8.15 Shiells, R.A., Falk, G.: Potentiation of ‘on’ bipolar cell flash responses by dim background light and cGMP in dogfish retinal slices. J. Physiol. 542, 211–220 (2002). doi:10.1113/jphysiol.2002.019752 Stemmler, M., Usher, M., Niebur, E.: Lateral interactions in primary visual cortex: a model bridging physiology and psychophysics. Science 269, 1877–1880 (1995). doi:10.1126/science.7569930 Anderson, J.S., Lampl, I., Gillespie, D.C., Ferster, D.: The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968–1972 (2000). doi:10.1126/science.290.5498.1968 Hennig, M.H., Kerscher, N.J., Funke, K., Wörgötter, F.: Stochastic resonance in visual cortical neurons: does the eye-tremor actually improve visual acuity? Neurocomp. 44–46, 115–121 (2002). doi:10.1016/S0925-2312(02)00371-5 Riani, M., Simonotto, E.: Stochastic resonance in the perceptual interpretation of ambiguous figures: a neural network model. Phys. Rev. Lett. 72, 3120–3123 (1994). doi:10.1103/PhysRevLett.72.3120 Mori, T., Kai, S.: Noise-induced entrainment and stochastic resonance in human brain waves. Phys. Rev. Lett. 88, 218101 (2002). doi:10.1103/PhysRevLett.88.218101 Simonotto, E., Riani, M., Seife, C., Roberts, M., Twitty, J., Moss, F.: Visual perception of stochastic resonance. Phys. Rev. Lett. 78, 1186–1189 (1997). doi:10.1103/PhysRevLett.78.1186 Kitajo, K., Nozaki, D., Ward, L.M., Yamamoto, Y.: Behavioral stochastic resonance within the human brain. Phys. Rev. Lett. 90, 218103 (2003). doi:10.1103/PhysRevLett.90.218103 Sorrentino, A., Parkkonen, L., Piana, M., Massone, A.M., Narici, L., Carozzo, S., Riani, M., Sannita, W.G.: Modulation of brain and behavioural responses to cognitive visual stimuli with varying signal-to-noise ratios. Clin. Neurophysiol. 117, 1098–1105 (2006). doi:10.1016/j.clinph.2006.01.011 Buschman, T.J., Miller, E.K.: Top-down versus bottom-up control of attention in the prefrontal and parietal cortices. Science 315, 1860–1862 (2007). doi:10.1126/science.1138071 Multiple authors: Multi-author dedicated review on visual binding. Neuron 24, 7–127 (1999). doi:10.1016/S0896-6273(00)80817-X Ito, M.: Internal model visualized. Nature 403, 153–154 (2000). doi:10.1038/35003097 Sannita, W.G. Stimulus-related synchronization, ‘visual binding’ and signal-to-noise ratio in the brain. J. Neurosci. (electronic letter of comment to Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E. Synchronization of neural activity across cortical areas correlates with concious perception. J Neurosci. 2007 Mar 14; 27(11):2858–65), April 3, 2007 Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004). doi:10.1126/science.1099745 Lampl, I., Yarom, Y.: Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism. Neuroscience 78, 325–341 (1997). doi:10.1016/S0306-4522(96)00588-X Palva, S., Linkenkaer-Hansen, K., Näätanen, R., Palva, J.M.: Early neural correlates of conscious somatosensory perception. J. Neurosci. 25, 5248–5258 (2005). doi:10.1523/JNEUROSCI.0141-05.2005 Lakatos, P., Shah, A.S., Knuth, K.H., Ulbert, I., Karmos, G.: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in auditory cortex. J. Neurophysiol. 94, 1904–1911 (2005). doi:10.1152/jn.00263.2005 Canolty, R.T., Edwards, E., Dalal, S.S., Soltani, M., Nagarajan, S.S., Kirsch, H.E., Berger, M.S., Barbaro, N.M., Knight, R.T.: High gamma power is phase locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006). doi:10.1126/science.1128115 Brandt, M.E.: Visual and auditory evoked phase resetting of the alpha EEG. Int. J. Psychophysiol. 26, 285–298 (1977). doi:10.1016/S0167-8760(97)00771-X Rodriguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., Varela, F.J.: Perception’s shadow: long-distance synchronization of human brain activity. Nature 397, 430–433 (1999). doi:10.1038/17002 Herculano-Houzel, S., Munk, M.H., Neuenschwander, S., Singer, W.: Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J. Neurosci. 19, 3992–4010 (1999) Heinrich, S.P., Bach, M.: 120 Hz oscillations in the flash visual evoked potential are strictly phase-locked and limited to the first 100 ms. Vis. Neurosci. 18, 917–921 (2001) Freeman, W.J., Rogers, L.J.: Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. J. Neurophysiol. 87, 937–945 (2002) Kanamaru, T.: Analysis of synchronization between two modules of pulse neural networks with excitatory and inhibitory connections. Neural Comput. 18, 1111–1131 (2006). doi:10.1162/neco.2006.18.5.1111 Melloni, L., Molina, C., Pena, M., Torres, D., Singer, W., Rodriguez, E.: Synchronization of neural activity across cortical areas correlates with conscious perception. J. Neurosci. 27, 2858–2865 (2007). doi:10.1523/JNEUROSCI.4623-06.2007 Gray, C.M., McCormick, D.A.: Chattering cells: superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274, 109–113 (1996). doi:10.1126/science.274.5284.109 Jefferys, G.R., Traub, R.D., Whittington, M.A.: Neuronal networks for induced ‘40 Hz’ rhythms. Trends Neurosci. 19, 202–208 (1996). doi:10.1016/S0166-2236(96)10023-0 Traub, R.D., Jefferys, J.G.R., Whittington, M.A.: Fast Oscillations in Cortical Circuits. MIT, Cambridge (1999) Fisher, Y., Durr, R.: Inhibitory control of intrinsic hippocampal oscillations? Brain Res. 982, 79–81 (2003). doi:10.1016/S0006-8993(03)02974-3 Castelo-Branco, M., Neuenschwander, S., Singer, W.: Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J. Neurosci. 18, 6395–6410 (1998) Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J.: Coherent oscillations: a mechanism of feature linking in the visual system? Biol. Cybern. 60, 121–130 (1988). doi:10.1007/BF00202899 Solessio, E., Vigh, J., Cuenca, N., Rapp, K., Lasater, E.M.: Membrane properties of an unusual intrinsically oscillating, wide-field teleost retinal amacrine cell. J. Physiol. 544, 831–847 (2002). doi:10.1113/jphysiol.2002.021899 Bringuier, V., Fregnac, Y., Baranyi, A., Debanne, D., Schulz, D.E.: Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat. J. Physiol. 500, 751–774 (1997) Brosch, M., Bauer, R., Eckhorn, R.: Stimulus-dependent modulations of correlated high-frequency oscillations in cat visual cortex. Cereb. Cortex 7, 70–76 (1997). doi:10.1093/cercor/7.1.70 Fries, P., Schroder, J.H., Roelfsema, P.R., Singer, W., Engel, A.K.: Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J. Neurosci. 22, 3739–3754 (2002) von der Malsburg, C., Schneider, W.: A neural cocktail-party processor. Biol. Cybern. 54, 29–40 (1986). doi:10.1007/BF00337113 König, P., Janisch, B., Schillen, T.B.: Stimulus-dependent assembly formation of oscillatory responses. Neural Comput. 4, 666–681 (1992). doi:10.1162/neco.1992.4.5.666 Gail, A., Brinksmeyer, H.J., Eckhorn, R.: Contour decouples gamma activity across texture representation in monkey striate cortex. Cereb. Cortex 10, 840–850 (2000). doi:10.1093/cercor/10.9.840 Sannita, W.G., Carozzo, S., Fioretto, M., Garbarino, S., Martinoli, C.: Abnormal waveforms of the human response to contrast: contributions from oscillatory components. Invest. Ophthalmol. Vis. Sci. 48, 4534–4541 (2007). doi:10.1167/iovs.07-0234 Lakatos, P., Karmos, G., Mehta, A.D., Ulbert, I., Schroeder, C.E.: Entrainment of neuronal oscillations as a mechanism of attentional selection. Science 320, 110–113 (2008). doi:10.1126/science.1154735 Hounsgaard, J., Midtgaard, J.: Dendrite processing in more ways than one. Trends Neurosci. 12, 313–315 (1989). doi:10.1016/0166-2236(89)90036-2 Alaburda, A., Russo, R., MacAulay, N., Hounsgaard, J.: Periodic high-conductance states in spinal neurons during scratch-like network activity in adult turtle. J. Neurosci. 25, 6316–6321 (2005). doi:10.1523/JNEUROSCI.0843-05.2005 Rodieck, R.W.: The First Steps in Seeing. Sinauer, Sunderland (1998) Deuschl, G., Eisen, A.: Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Neurophysiology, (EEG Suppl 52). Elsevier Science, Amsterdam (1999)