Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tác động điều hòa thần kinh của GnRH từ hạch celiac đến sự thoái triển hoàng thể ở chuột cống mang thai muộn
Tóm tắt
Hệ thống GnRH/GnRH receptor đã được phát hiện trong một số mô ngoại yên, mặc dù ý nghĩa sinh lý của nó vẫn chưa được xác lập rõ ràng. Với việc xem xét rằng hệ thần kinh ngoại vi có thể hoạt động như một điều chế của hoàng thể thai kỳ, mục tiêu là điều tra sinh lý sự hiện diện của hệ thống GnRH trong hạch celiac (CG) và phân tích sự tham gia có thể của nó trong sự thoái triển hoàng thể thông qua dây thần kinh buồng trứng trên (SON) vào cuối thai kỳ ở chuột cống. Hệ thống CG-SON-Buồng trứng được tích hợp ex vivo của chuột cống vào ngày 21 của thai kỳ đã được sử dụng. Cetrorelix (CTX), một chất đối kháng GnRH receptor, đã được thêm vào ngăn hạch trong khi các hệ thống đối chứng không được điều trị. Sự giải phóng GnRH từ hạch đã được phát hiện dưới các điều kiện cơ bản. Sau đó, việc bổ sung CTX vào CG đã làm tăng sự phát hành này, điều này cho thấy sự chặn của receptor. Ngược lại, CTX trong CG đã gây ra sự gia tăng ở sự phát hành progesterone của buồng trứng. Hơn nữa, các tế bào hoàng thể cho thấy sự gia tăng trong việc biểu hiện Hsd3b1 và sự giảm trong việc biểu hiện Akr1c3 (các enzyme tổng hợp và phân hủy progesterone, tương ứng), giảm nhuộm TUNEL theo sự gia tăng hoạt động của hệ thống phòng thủ chống oxy hóa và mức độ lipid peroxide thấp. Sự giải phóng nitric oxide (NO) của buồng trứng và hạch đã tăng lên, trong khi nồng độ nitrotyrosine hoàng thể, được đo như một dấu hiệu căng thẳng nitrosative, đã giảm. CTX trong CG đã làm giảm sự phát hành noradrenaline của buồng trứng. Nghiên cứu hiện tại cung cấp bằng chứng rằng GnRH từ CG có thể kích hoạt các tín hiệu thần kinh thúc đẩy sự thoái triển hoàng thể trong thai kỳ muộn bằng cách ảnh hưởng đến sự giải phóng NO và noradrenaline ở buồng trứng.
Từ khóa
#GnRH #hạch celiac #thoái triển hoàng thể #chuột cống #noradrenaline #nitric oxideTài liệu tham khảo
Aguado LI, Ojeda SR (1984) Prepuberal ovarian function is finely regulated by direct adrenergic influences. Role of noradrenergic innervation. Endocrinology 114:1845–1853
Al-Gubory KH, Fowler PA, Garrel C (2010) The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 42:1634–1650
Al-Gubory KH, Garrel C, Faure P, Sugino N (2012) Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reprod Biomed Online 25:551–560
Barnes MJ, Lapanowski K, Rafols JA, Lawson DM, Dunbar JC (2001) GnRH and gonadotropin release is decreased in chronic nitric oxide deficiency. Exp Biol Med 226:701–706
Bradford MA (1976) A rapid and sensitive method for determination of microgram quatities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Bronzi CD, Vega Orozco AS, Rodriguez D, Rastrilla AM, Sosa ZY, Casais M (2015) Noradrenaline modulates the presence of gonadotropin-releasing hormone in ovary. The importance of its interrelation on the ovarian steroidogenesis and apoptosis on dioestrus II in rat. J Steroid Biochem Mol Biol 154:39–46
Casais M, Delgado SM, Sosa Z, Rastrilla AM (2006) Pregnancy in rats is modulated by ganglionic cholinergic action. Reproduction 131:1151–1158
Casais M, Delgado SM, Vallcaneras S, Sosa Z, Rastrilla AM (2007) Nitric oxide in prepubertal rat ovary: contribution of the ganglionic nitric oxide synthase system via superior ovarian nerve. Neuro Endocrinol Lett 28:39–44
Casais M, Sosa ZY, Rastrilla AM, Aguado L (2001) Coeliac ganglion adrenergic activity modifies ovarian progesterone during pregnancy: its inter-relationship with LH. J Endocrinol 170:575–584
Chachlaki K, Garthwaite J, Prevot V (2017) The gentle art of saying NO: how nitric oxide gets things done in the hypothalamus. Nature reviews. Endocrinology 13:521–535
Cheung LWT, Wong AST (2008) Gonadotropin-releasing hormone: GnRH receptor signaling in extrapituitary tissues. FEBS J 275:5479–5495
Chun SY, Eisenhauer KM, Kubo M, Hsueh AJW (1995) Interleukin-1β suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology 136:3120–3127
Daneri C, Orozco AV, Bronzi D, Mohn C, Rastrilla AM, Sosa ZY (2013) Involvement of the ganglion cholinergic receptors in gonadotropin-releasing hormone, catecholamines, and progesterone release in the rat ovary. Fertil Steril 99:2062–2070
Dineva JD, Vangelov IM, Nikolov GG, Konakchieva RT, Ivanova MD (2008) Nitric oxide stimulates the production of atrial natriuretic peptide and progesterone by human granulosa luteinized cells with an antiapoptotic effect. Endocr Regul 42:45–51
Fan J, Chen W, Guo X, Wang Z, Ming J, Guo Y, Xu Y (2013) Distribution of GnRH receptor in celiac-superior mesenteric ganglia of goat and its implications. Acta Veterinaria et Zootechnica Sinica 44:289–294
Ford CP, Dryden WF, Smith PA (2003) Neurotrophic regulation of calcium channels by the peptide neurotransmitter luteinizing hormone releasing hormone. J Neurosci 23:7169–7175
Ford CP, Wong KV, Lu VB, Posse de Chaves E, Smith PA (2008) Differential neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron. J Neurophysiol 99:1319–1332
Gao L, Wu TW, Ni X (2016) Gas transmitters in female reproductive system. Sheng li xue bao 68:611–620
Ghersa F, Burdisso J, Vallcaneras SS, Fuentes F, de la Vega M, Delgado SM, Telleria CM, Casais M (2015) Neuromodulation of the luteal regression: presence of progesterone receptors in coeliac ganglion. Exp Physiol 100:935–946
Hummel SG, Fischer AJ, Martin SM, Schafer FQ, Buettner GR (2006) Nitric oxide as a cellular antioxidant: a little goes a long way. Free Radic Biol Med 40:501–506
Jan LY, Jan YN (1982) Peptidergic transmission in sympathetic ganglia of the frog. J Physiol 327:219–246
Knauf C, Prevot V, Stefano GB, Mortreux G, Beauvillain JC, Croix D (2001) Evidence for a spontaneous nitric oxide release from the rat median eminence: influence on gonadotropin-releasing hormone release. Endocrinology 142:2343–2350
Kuranaga E, Kanuka H, Hirabayashi K, Suzuki M, Nishihara M, Takahashi M (2000) Progesterone is a cell death suppressor that downregulates Fas expression in rat corpus luteum. FEBS Lett 466:279–282
Maggi R, Cariboni AM, Marelli MM, Moretti RM, Andrè V, Marzagalli M, Limonta P (2016) GnRH and GnRH receptors in the pathophysiology of the human female reproductive system. Hum Reprod Update 22:358–381
Masliukov PM, Emanuilov AI, Madalieva LV, Moiseev KY, Bulibin AV, Korzina MB, Porseva VV, Korobkin AA, Smirnova VP (2014) Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia. Neuroscience 256:271–281
McCann SM, Haens G, Mastronardi C, Walczewska A, Karanth S, Rettori V, Yu WH (2003) The role of nitric oxide (NO) in control of LHRH release that mediates gonadotropin release and sexual behavior. Curr Pharm Des 9:381–390
Millar RP, King JA, Davidson JS, Milton RC (1987) Gonadotrophin-releasing hormone diversity of functions and clinical applications. S Afr Med J 72:748–755
Mitsube K (2002) Roles of nitric oxide (NO) on LH-induced ovulation and steroidogenesis in the in vitro perfused rat ovary and on the regulation of ovarian blood flow in vivo. Hokkaido journal of medical science 77:313–324
Morales MA, Holmberg K, Xu ZQ, Cozzari C, Hartman BK, Emson P, Goldstein M, Elfvin LG, Hökfelt T (1995) Localization of choline acetyltransferase in rat peripheral sympathetic neurons and its coexistence with nitric oxide synthase and neuropeptides. Proc Natl Acad Sci USA 92:11819–11823
Motta AB, Estevez A, de Gimeno MF (1999) The involvement of nitric oxide in corpus luteum regression in the rat: feedback mechanism between prostaglandin F(2alpha) and nitric oxide. Mol Hum Reprod 5:1011–1016
Motta AB, Estevez A, Tognetti T, Gimeno MA, Franchi AM (2001) Dual effects of nitric oxide in functional and regressing rat corpus luteum. Mol Hum Reprod 7:43–47
Papadopoulos V, Dharmarajan AM, Li H, Culty M, Lemay M, Sridaran R (1999) Mitochondrial peripheral-type benzodiazepine receptor expression. Correlation with gonadotropin-releasing hormone (GnRH) agonist-induced apoptosis in the corpus luteum. Biochem Pharmacol 58:1389–1393
Park EJ, Shin JW, Seo YS, Kim DW, Hong SY, Park WI, Kang BM (2011) Gonadotropin-releasing hormone-agonist induces apoptosis of human granulosa-luteal cells via caspase-8, -9 and -3, and poly-(ADP-ribose)-polymerase cleavage. Biosci Trends 5:120–128
Quinson N, Miolan JP, Niel JP (2000) Muscarinic receptor activation is a prerequisite for the endogenous release of nitric oxide modulating nicotinic transmission within the coeliac ganglion in the rabbit. Neuroscience 95:1129–1138
Ramakrishnappa N, Rajamahendran R, Lin YM, Leung PC (2005) GnRH in non-hypothalamic reproductive tissues. Anim Reprod Sci 88:95–113
Ramírez Hernández DA, Vieyra Valdez E, Rosas Gavilán G, Linares Culebro R, Espinoza Moreno JA, Chaparro Ortega A, Domínguez Casalá R, Morales-Ledesma L (2020) Role of the superior ovarian nerve in the regulation of follicular development and steroidogenesis in the morning of diestrus 1. J Assist Reprod Genet 37:1477–1488
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237
Reissmann T, Schally AV, Bouchard P, Riethmiiller H, Engel J (2000) The LHRH antagonist cetrorelix: a review. Hum Reprod Update 6:322–331
Rettori V, Belova N, Dees WL, Nyberg CL, Gimeno M, McCann SM (1993) Role of nitric oxide in the control of luteinizing hormone-releasing hormone release in vivo and in vitro. Proc Natl Acad Sci USA 90:10130–10134
Roth C, Hegemann F, Hildebrandt J, Balzer I, Witt A, Wuttke W, Jarry H (2004) Pituitary and gonadal effects of GnRH (gonadotropin releasing hormone) analogues in two peripubertal female rat models. Pediatr Res 55:126–133
Schirman-Hildesheim TD, Bar T, Ben-Aroya N, Koch Y (2005) Differential gonadotropin-releasing hormone (GnRH) and GnRH receptor messenger ribonucleic acid expression patterns in different tissues of the female rat across the estrous cycle. Endocrinology 146:3401–3408
Selstam G, Norjavaara E, Rosberg S, Khan I, Hamberger B, Hamberger L (1987) Catecholamine content and adenylate cyclase activity in corpora lutea of different ages of the PMSG-treated immature rat. Mol Cell Endocrinol 53:155–160
Sengupta A, Chakrabarti N, Sridaran R (2008) Presence of immunoreactive gonadotropin releasing hormone (GnRH) and its receptor (GnRHR) in rat ovary during pregnancy. Mol Reprod Dev 75:1031–1044
Sosa ZY, Casais M, Rastrilla AM, Aguado LI (2000) Adrenergic influences on the celiac ganglion affect the release of progesterone from cycling ovaries: characterization of an in vitro system. J Endocrinol 166:307–318
Sridaran R, Philip GH, Li H, Culty M, Liu Z, Stocco DM, Papadopoulos V (1999) GnRH agonist treatment decreases progesterone synthesis, luteal peripheral benzodiazepine receptor mRNA, ligand binding and steroidogenic acute regulatory protein expression during pregnancy. J Mol Endocrinol 22:45–54
Srivastava RK, Luu-The V, Marrone BL, Harris-Hooker S, Sridaran R (1994) Inhibition of steroidogenesis by luteal cells of early pregnancy in the rat in response to in vitro administration of a gonadotropin-releasing hormone agonist. J Steroid Biochem Mol Biol 49:73–79
Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28:117–149
Sugino N, Nakamura Y, Takeda O, Ishimatsu M, Kato H (1993) Changes in activities of superoxide dismutase and lipid peroxide in corpus luteum during pregnancy in rats. J Reprod Fertil 97:347–351
Sugino N, Telleria CM, Gibori G (1997) Progesterone inhibits 20α-hydroxysteroid dehydrogenase expression in the rat corpus luteum through the glucocorticoid receptor. Endocrinology 138:4497–4500
Takao Y, Fujiwara H, Yoshioka S, Fujii S, Ueda M (2008) Monoamine oxidase A is highly expressed by the human corpus luteum of pregnancy. Reproduction 136:367–375
Tang Z, Huang Y, Zhang Z, Tang Y, Chen J, Sun F, Yang H, Wang Z (2017) Accumulated autophagosomes and excessive apoptosis during the luteal development of pregnant rats. Int J Clin Exp Pathol 10:11384–11392
Telleria CM, Stocco CO, Stati AO, Deis RP (1999) Progesterone receptoris not required for progesterone action in the rat corpus luteum of pregnancy. Steroids 64:760–766
Vallcaneras SS, Casais M, Delgado SM, Filippa V, Mohamed F, Sosa Z, Rastrilla AM (2009) Androgen receptors in coeliac ganglion in late pregnant rat. Steroids 74:526–534
Wang J, Tang M, Jiang H, Wu B, Cai W, Hu C, Bao R, Dong Q, Xiao L, Gang L, Zhang C (2016) The role of adrenergic activation on murine luteal cell viability and progesterone production. Theriogenology 86:1182–1188
Weiss GK, Dail WG, Ratner A (1982) Evidence for direct neural control of ovarian steroidogenesis in rats. J Reprod Fertil 65:507–511
Wink DA, Miranda KM, Espey MG, Pluta RM, Hewett SJ, Colton C, Vitek M, Feelisch M, Grisham MB (2001) Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal 3:203–213
Yang H, Bhat GK, Wadley R, Wright K, Chung BM, Whittaker JA, Dharmarajan AM, Sridaran R (2003) Gonadotropin-releasing hormone-agonist inhibits synthesis of nitric oxide and steroidogenesis by luteal cells in the pregnant rat. Biol Reprod 68:2222–2231
