Neuroepithelial progenitors generate and propagate non-neuronal action potentials across the spinal cord

Current Biology - Tập 31 - Trang 4584-4595.e4 - 2021
Kalaimakan Hervé Arulkandarajah1, Guillaume Osterstock1, Agathe Lafont1, Hervé Le Corronc1,2, Nathalie Escalas3, Silvia Corsini1, Barbara Le Bras1, Linda Chenane1, Juliette Boeri1, Antonny Czarnecki1, Christine Mouffle1, Erika Bullier1, Elim Hong1, Cathy Soula3, Pascal Legendre1, Jean-Marie Mangin1
1Sorbonne Université, INSERM, CNRS, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
2Université d’Angers, 49000 Angers, France
3Centre de Biologie du Développement (CBD) CNRS/UPS, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31000 Toulouse, France

Tài liệu tham khảo

Moody, 2005, Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells, Physiol. Rev., 85, 883, 10.1152/physrev.00017.2004 Spitzer, 2006, Electrical activity in early neuronal development, Nature, 444, 707, 10.1038/nature05300 Blankenship, 2010, Mechanisms underlying spontaneous patterned activity in developing neural circuits, Nat. Rev. Neurosci., 11, 18, 10.1038/nrn2759 Kirischuk, 2017, Modulation of neocortical development by early neuronal activity: physiology and pathophysiology, Front. Cell. Neurosci., 11, 379, 10.3389/fncel.2017.00379 Corlew, 2004, Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones, J. Physiol., 560, 377, 10.1113/jphysiol.2004.071621 Vitali, 2018, Progenitor hyperpolarization regulates the sequential generation of neuronal subtypes in the developing neocortex, Cell, 174, 1264, 10.1016/j.cell.2018.06.036 LoTurco, 1995, GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis, Neuron, 15, 1287, 10.1016/0896-6273(95)90008-X Noctor, 2002, Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia, J. Neurosci., 22, 3161, 10.1523/JNEUROSCI.22-08-03161.2002 Weissman, 2004, Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex, Neuron, 43, 647, 10.1016/j.neuron.2004.08.015 Rosa, 2015, Neuron-glia signaling in developing retina mediated by neurotransmitter spillover, eLife, 4, e09590, 10.7554/eLife.09590 Wang, 2009, Characterization of rhythmic Ca2+ transients in early embryonic chick motoneurons: Ca2+ sources and effects of altered activation of transmitter receptors, J. Neurosci., 29, 15232, 10.1523/JNEUROSCI.3809-09.2009 Hamburger, 1963, Observations and experiments on spontaneous rhythmical behavior in the chick embryo, Dev. Biol., 6, 533, 10.1016/0012-1606(63)90140-4 Suzue, 1999, Highly reproducible spatiotemporal patterns of mammalian embryonic movements at the developmental stage of the earliest spontaneous motility, Eur. J. Neurosci., 11, 2697, 10.1046/j.1460-9568.1999.00686.x Landmesser, 2018, General principles of spinal motor circuit development: early contributions from research on avian embryos, Int. J. Dev. Biol., 62, 235, 10.1387/ijdb.170305LL Shwartz, 2013, One load to rule them all: mechanical control of the musculoskeletal system in development and aging, Differentiation, 86, 104, 10.1016/j.diff.2013.07.003 Hanson, 2008, Spontaneous rhythmic activity in early chick spinal cord influences distinct motor axon pathfinding decisions, Brain Res. Brain Res. Rev., 57, 77, 10.1016/j.brainresrev.2007.06.021 Hanson, 2003, Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord, J. Neurosci., 23, 587, 10.1523/JNEUROSCI.23-02-00587.2003 Czarnecki, 2014, Acetylcholine controls GABA-, glutamate-, and glycine-dependent giant depolarizing potentials that govern spontaneous motoneuron activity at the onset of synaptogenesis in the mouse embryonic spinal cord, J. Neurosci., 34, 6389, 10.1523/JNEUROSCI.2664-13.2014 Frischknecht, 1998, Voltage- and ligand-gated ion channels in floor plate neuroepithelia of the rat, Neuroscience, 85, 1135, 10.1016/S0306-4522(97)00641-6 Osterstock, 2018, Axoglial synapses are formed onto pioneer oligodendrocyte precursor cells at the onset of spinal cord gliogenesis, Glia, 66, 1678, 10.1002/glia.23331 Lupo, 2006, Mechanisms of ventral patterning in the vertebrate nervous system, Nat. Rev. Neurosci., 7, 103, 10.1038/nrn1843 Bittman, 2004, Patterns of cell-cell coupling in embryonic spinal cord studied via ballistic delivery of gap-junction-permeable dyes, J. Comp. Neurol., 477, 273, 10.1002/cne.20253 Rozental, 2001, How to close a gap junction channel. Efficacies and potencies of uncoupling agents, Methods Mol. Biol., 154, 447 Rowitch, 2004, Glial specification in the vertebrate neural tube, Nat. Rev. Neurosci., 5, 409, 10.1038/nrn1389 Deneen, 2006, The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord, Neuron, 52, 953, 10.1016/j.neuron.2006.11.019 Barry, 2005, Differentiation of radial glia from radial precursor cells and transformation into astrocytes in the developing rat spinal cord, Glia, 50, 187, 10.1002/glia.20166 Cañizares, 2020, Multiple steps characterise ventricular layer attrition to form the ependymal cell lining of the adult mouse spinal cord central canal, J. Anat., 236, 334 Khazanov, 2017, Floor plate descendants in the ependyma of the adult mouse central nervous system, Int. J. Dev. Biol., 61, 257, 10.1387/ijdb.160232nb Mirzadeh, 2017, Bi- and uniciliated ependymal cells define continuous floor-plate-derived tanycytic territories, Nat. Commun., 8, 13759, 10.1038/ncomms13759 Wichterle, 2002, Directed differentiation of embryonic stem cells into motor neurons, Cell, 110, 385, 10.1016/S0092-8674(02)00835-8 Le Bras, 2014, In vivo assembly of the axon initial segment in motor neurons, Brain Struct. Funct., 219, 1433, 10.1007/s00429-013-0578-7 Shibata, 1997, Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord, J. Neurosci., 17, 9212, 10.1523/JNEUROSCI.17-23-09212.1997 Scain, 2010, Glycine release from radial cells modulates the spontaneous activity and its propagation during early spinal cord development, J. Neurosci., 30, 390, 10.1523/JNEUROSCI.2115-09.2010 Willebrords, 2017, Inhibitors of connexin and pannexin channels as potential therapeutics, Pharmacol. Ther., 180, 144, 10.1016/j.pharmthera.2017.07.001 Marichal, 2016, Purinergic signalling in a latent stem cell niche of the rat spinal cord, Purinergic Signal., 12, 331, 10.1007/s11302-016-9507-6 Donnelly-Roberts, 2007, Discovery of P2X7 receptor-selective antagonists offers new insights into P2X7 receptor function and indicates a role in chronic pain states, Br. J. Pharmacol., 151, 571, 10.1038/sj.bjp.0707265 Collo, 1997, Tissue distribution of the P2X7 receptor, Neuropharmacology, 36, 1277, 10.1016/S0028-3908(97)00140-8 Genzen, 2009, Ependymal cells along the lateral ventricle express functional P2X(7) receptors, Purinergic Signal., 5, 299, 10.1007/s11302-009-9143-5 Chittajallu, 2004, NG2-positive cells in the mouse white and grey matter display distinct physiological properties, J. Physiol., 561, 109, 10.1113/jphysiol.2004.074252 Káradóttir, 2008, Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter, Nat. Neurosci., 11, 450, 10.1038/nn2060 Gu, 1994, Spontaneous neuronal calcium spikes and waves during early differentiation, J. Neurosci., 14, 6325, 10.1523/JNEUROSCI.14-11-06325.1994 Moruzzi, 2009, Differential expression of membrane conductances underlies spontaneous event initiation by rostral midline neurons in the embryonic mouse hindbrain, J. Physiol., 587, 5081, 10.1113/jphysiol.2009.180091 Placzek, 2005, The floor plate: multiple cells, multiple signals, Nat. Rev. Neurosci., 6, 230, 10.1038/nrn1628 Meech, 2015, Electrogenesis in the lower Metazoa and implications for neuronal integration, J. Exp. Biol., 218, 537, 10.1242/jeb.111955 Mackie, 1970, Neuroid conduction and the evolution of conducting tissues, Q. Rev. Biol., 45, 319, 10.1086/406645 Anderson, 1980, Epithelial conduction: its properties and function, Prog. Neurobiol., 15, 161, 10.1016/0301-0082(80)90022-2 Leys, 2007, The biology of glass sponges, Adv. Mar. Biol., 52, 1, 10.1016/S0065-2881(06)52001-2 Castelfranco, 2016, Evolution of rapid nerve conduction, Brain Res., 1641, 11, 10.1016/j.brainres.2016.02.015 Eckert, 1972, Sensory mechanisms in Paramecium. I. Two components of the electric response to mechanical stimulation of the anterior surface, J. Exp. Biol., 56, 683, 10.1242/jeb.56.3.683 Bast, 1949, Wilhelm His, Jr. and the Bundle of His, J. Hist. Med. Allied Sci., IV, 170, 10.1093/jhmas/IV.2.170 Kingsbury, 1920, The extent of the floor-plate of his and its significance, J. Comp. Neurol., 32, 113, 10.1002/cne.900320106 Attwell, 2001, An energy budget for signaling in the grey matter of the brain, J. Cereb. Blood Flow Metab., 21, 1133, 10.1097/00004647-200110000-00001 Belgacem, 2015, Inversion of Sonic hedgehog action on its canonical pathway by electrical activity, Proc. Natl. Acad. Sci. USA, 112, 4140, 10.1073/pnas.1419690112 Borodinsky, 2016, Crosstalk among electrical activity, trophic factors and morphogenetic proteins in the regulation of neurotransmitter phenotype specification, J. Chem. Neuroanat., 73, 3, 10.1016/j.jchemneu.2015.12.001 Abdul-Wajid, 2015, T-type calcium channel regulation of neural tube closure and EphrinA/EPHA expression, Cell Rep., 13, 829, 10.1016/j.celrep.2015.09.035 Zhao, 2011, Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function, Nat. Methods, 8, 745, 10.1038/nmeth.1668 Touahri, 2012, Sulfatase 1 promotes the motor neuron-to-oligodendrocyte fate switch by activating Shh signaling in Olig2 progenitors of the embryonic ventral spinal cord, J. Neurosci., 32, 18018, 10.1523/JNEUROSCI.3553-12.2012 Slezak, 2007, Transgenic mice for conditional gene manipulation in astroglial cells, Glia, 55, 1565, 10.1002/glia.20570 Park, 2008, System for tamoxifen-inducible expression of cre-recombinase from the Foxa2 locus in mice, Dev. Dyn., 237, 447, 10.1002/dvdy.21415 Zervas, 2004, Cell behaviors and genetic lineages of the mesencephalon and rhombomere 1, Neuron, 43, 345, 10.1016/j.neuron.2004.07.010 Lennon, 1996, The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression, Genomics, 33, 151, 10.1006/geno.1996.0177