Các quá trình giai đoạn nhận thức thần kinh trong hiệu suất bộ nhớ làm việc

Springer Science and Business Media LLC - Tập 21 Số 6 - Trang 1130-1152 - 2021
Agatha Lenartowicz1, Holly Truong1, Kristen Enriquez1, Julia Webster1, Jean‐Baptiste Pochon1, Jesse Rissman1, Carrie Bearden1, Sandra K. Loo1, Robert M. Bilder1
1University of California Los Angeles, Los Angeles, CA, USA

Tóm tắt

Tóm tắt

Bộ nhớ làm việc (WM) được định nghĩa là việc duy trì chủ động và cập nhật linh hoạt các thông tin liên quan đến mục tiêu trong một hình thức có dung lượng hạn chế và chống lại sự can thiệp. Các biện pháp phức tạp của WM yêu cầu nhiều quá trình phụ, khiến cho việc cô lập các đóng góp cụ thể của các hệ thống phụ được giả định độc lập trở nên khó khăn. Nghiên cứu hiện tại được thiết kế để xác định xem các chỉ số neurophysiological của các quá trình phụ được đề xuất của WM có dự đoán được hiệu suất WM hay không. Chúng tôi đã tuyển dụng 200 cá nhân xác định bởi trạng thái tìm kiếm sự chăm sóc và đo phản ứng thần kinh bằng cách sử dụng điện não đồ (EEG), trong khi các người tham gia thực hiện bốn nhiệm vụ WM. Chúng tôi đã trích xuất các đặc điểm EEG theo phổ và theo miền thời gian từ mỗi nhiệm vụ để định lượng từng quá trình phụ được giả định của WM: duy trì (lưu trữ nội dung), duy trì mục tiêu, và cập nhật. Sau đó, chúng tôi sử dụng các biện pháp EEG của từng quá trình phụ làm các yếu tố dự đoán hiệu suất nhiệm vụ để đánh giá đóng góp của chúng vào WM. Các yếu tố dự đoán có ý nghĩa của dung lượng WM bao gồm hoạt động trì hoãn không đồng bộ và theta trước trán, các đặc điểm thường liên quan đến duy trì (lưu trữ nội dung). Ngược lại, các yếu tố dự đoán có ý nghĩa về thời gian phản ứng và sự biến động của nó bao gồm biến đổi âm tính điều kiện và P3b, các đặc điểm thường liên quan đến duy trì mục tiêucập nhật. Tổng thể, những kết quả này gợi ý hai chiều chính đóng góp vào hiệu suất WM, các quá trình toni trong khi duy trì góp phần vào dung lượng, và các quá trình phasic trong khi xử lý kích thích góp phần vào tốc độ và sự biến động phản ứng. Phân tích cũng làm nổi bật rằng độ tin cậy của các đặc điểm trên các nhiệm vụ lớn hơn (và so sánh được với hiệu suất WM) cho các đặc điểm liên quan đến xử lý kích thích (P3b và alpha) hơn là cho duy trì (gamma, theta và coupling tần số chéo).

Từ khóa


Tài liệu tham khảo

Alexander, M. P., Stuss, D. T., Picton, T., Shallice, T., & Gillingham, S. (2007). Regional frontal injuries cause distinct impairments in cognitive control. Neurology, 68(18), 1515-1523. Retrieved from <Go to ISI>://000246130800013

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403-450. https://doi.org/10.1146/Annurev.Neuro.28.061604.135709

Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 3228-3233. https://doi.org/10.1073/pnas.0911531107

Axmacher, N., Mormann, F., Fernandez, G., Cohen, M. X., Elger, C. E., & Fell, J. (2007). Sustained neural activity patterns during working memory in the human medial temporal lobe. The Journal of Neuroscience, 27(29), 7807-7816. https://doi.org/10.1523/JNEUROSCI.0962-07.2007

Babiloni, C., Brancucci, A., Capotosto, P., Romani, G. L., Arendt-Nielsen, L., Chen, A. C., & Rossini, P. M. (2005). Slow cortical potential shifts preceding sensorimotor interactions. Brain Research Bulletin, 65(4), 309-316. https://doi.org/10.1016/j.brainresbull.2004.11.023

Baddeley, A. (1986). Working Memory. Oxford University Press.

Baddeley, A. (2002). Is working memory still working? European Psychologist, 7(2), 85-97. Retrieved from http://www.apa.org/journals/epp.html, http://www.hogrefe.de

Barch, D. M., Berman, M. G., Engle, R., Jones, J. H., Jonides, J., Macdonald, A., 3rd, . . . Sponheim, S. R. (2009a). CNTRICS final task selection: working memory. Schizophrenia Bulletin, 35(1), 136-152. https://doi.org/10.1093/schbul/sbn153

Barch, D. M., Carter, C. S., Arnsten, A., Buchanan, R. W., Cohen, J. D., Geyer, M., . . . Heinssen, R. (2009b). Selecting paradigms from cognitive neuroscience for translation into use in clinical trials: proceedings of the third CNTRICS meeting. Schizophrenia Bulletin, 35(1), 109-114. https://doi.org/10.1093/schbul/sbn163

Barch, D. M., & Dowd, E. C. (2010). Goal representations and motivational drive in schizophrenia: the role of prefrontal-striatal interactions. Schizophrenia Bulletin, 36(5), 919-934. https://doi.org/10.1093/schbul/sbq068

Barch, D. M., Mitropoulou, V., Harvey, P. D., New, A. S., Silverman, J. M., & Siever, L. J. (2004). Context-processing deficits in schizotypal personality disorder. Journal of Abnormal Psychology, 113(4), 556-568. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15535788

Barch, D. M., Moore, H., Nee, D. E., Manoach, D. S., & Luck, S. J. (2012). CNTRICS imaging biomarkers selection: Working memory. Schizophrenia Bulletin, 38(1), 43-52. https://doi.org/10.1093/schbul/sbr160

Bearden, C. E., Hoffman, K. M., & Cannon, T. D. (2001). The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disorders, 3(3), 106-150; discussion 151-103. https://doi.org/10.1034/j.1399-5618.2001.030302.x

Bechara, A., & Martin, E. M. (2004). Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology, 18(1), 152-162. https://doi.org/10.1037/0894-4105.18.1.152

Bilder, R. M. (2012). Executive control: balancing stability and flexibility via the duality of evolutionary neuroanatomical trends. Dialogues in Clinical Neuroscience, 14(1), 39-47. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22577303

Bilder, R. M., Lenartowicz, A., Rissman, J., Loo, S., Pochon, J. B., Enriquez, K., . . .… Hellemann, G. (2019). Spanning levels in the RDoC Matrix: Does working memory work? Paper presented at the Society for Biological Psychiatry, Chicago.

Bilder, R. M., Volavka, J., Lachman, H. M., & Grace, A. A. (2004). The catechol-O-methyltransferase polymorphism: relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology, 29(11), 1943-1961. https://doi.org/10.1038/sj.npp.1300542

Brewin, C. R., Gregory, J. D., Lipton, M., & Burgess, N. (2010). Intrusive images in psychological disorders: characteristics, neural mechanisms, and treatment implications. Psychological Review, 117(1), 210-232. https://doi.org/10.1037/a0018113

Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., … Knight, R. T. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science, 313(5793), 1626-1628. https://doi.org/10.1126/science.1128115

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. : Routledge Academic.

Cohen, J. D., Barch, D. M., Carter, C., & Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: converging evidence from three theoretically motivated cognitive tasks. Journal of Abnormal Psychology, 108(1), 120-133. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10066998

Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X. J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10(9), 910-923. https://doi.org/10.1093/cercor/10.9.910

Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169, 323-338. https://doi.org/10.1016/S0079-6123(07)00020-9

D'Ardenne, K., Eshel, N., Luka, J., Lenartowicz, A., Nystrom, L. E., & Cohen, J. D. (2012). Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proceedings of the National Academy of Sciences of the United States of America, 109(49), 19900-19909. https://doi.org/10.1073/Pnas.1116727109

D'Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. Cognitive Brain Research, 7, 1-13.

Daume, J., Gruber, T., Engel, A. K., & Friese, U. (2017). Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory. The Journal of Neuroscience, 37(2), 313-322. https://doi.org/10.1523/JNEUROSCI.2130-16.2016

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21. Doi https://doi.org/10.1016/J.Jneumeth.2003.10.009

Foxe, J. J., & Snyder, A. C. (2011). The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention. Frontiers in Psychology, 2, 154. https://doi.org/10.3389/fpsyg.2011.00154

Frazier-Wood, A. C., Bralten, J., Arias-Vasquez, A., Luman, M., Ooterlaan, J., Sergeant, J., . . . Rommelse, N. N. (2012). Neuropsychological intra-individual variability explains unique genetic variance of ADHD and shows suggestive linkage to chromosomes 12, 13, and 17. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 159B(2), 131-140. https://doi.org/10.1002/ajmg.b.32018

Fries, P., Scheeringa, R., & Oostenveld, R. (2008). Finding gamma. Neuron, 58(3), 303-305. https://doi.org/10.1016/j.neuron.2008.04.020

Fuster, J. M. (1985). The prefrontal cortex, mediator of cross-temporal contingencies. Human Neurobiology, 4(3), 169-179. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3934116

Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(997), 652-654. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4998337

Glahn, D. C., Kim, J., Cohen, M. S., Poutanen, V. P., Therman, S., Bava, S., … Cannon, T. D. (2002). Maintenance and manipulation in spatial working memory: Dissociations in the prefrontal cortex. NeuroImage, 17(1), 201-213. Doi https://doi.org/10.1006/Nimg.2002.1161

Gold, J. M., Hahn, B., Zhang, W. W., Robinson, B. M., Kappenman, E. S., Beck, V. M., & Luck, S. J. (2010). Reduced capacity but spared precision and maintenance of working memory representations in schizophrenia. Archives of General Psychiatry, 67(6), 570-577. https://doi.org/10.1001/archgenpsychiatry.2010.65

Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477-485. https://doi.org/10.1016/0896-6273(95)90304-6

Griffiths, B. J., Parish, G., Roux, F., Michelmann, S., van der Plas, M., Kolibius, L. D., .… Hanslmayr, S. (2019). Directional coupling of slow and fast hippocampal gamma with neocortical alpha/beta oscillations in human episodic memory. Proceedings of the National Academy of Sciences of the United States of America, 116(43), 21834-21842. https://doi.org/10.1073/pnas.1914180116

Haatveit, B. C., Sundet K Fau-Hugdahl, K., Hugdahl K Fau-Ueland, T., Ueland T Fau-Melle, I., Melle I Fau-Andreassen, O. A., & Andreassen, O. A. (2010). The validity of d prime as a working memory index: results from the "Bergen n-back task". Journal of Clinical and Experimental Neuropsychology, 32(8), 871-880.

Hamano, T., Luders, H. O., Ikeda, A., Collura, T. F., Comair, Y. G., & Shibasaki, H. (1997). The cortical generators of the contingent negative variation in humans: A study with subdural electrodes. Evoked Potentials-Electroencephalography and Clinical Neurophysiology, 104(3), 257-268. Retrieved from <Go to ISI>://A1997XD24600008

Hanslmayr, S., Klimesch, W., Sauseng, P., Gruber, W., Doppelmayr, M., Freunberger, R., & Pecherstorfer, T. (2005). Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neuroscience Letters, 375(1), 64-68. https://doi.org/10.1016/j.neulet.2004.10.092

Henderson, D., Poppe, A. B., Barch, D. M., Carter, C. S., Gold, J. M., Ragland, J. D., . . . MacDonald, A. W., 3rd. (2012). Optimization of a goal maintenance task for use in clinical applications. Schizophrenia Bulletin, 38(1), 104-113. https://doi.org/10.1093/schbul/sbr172

Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., . . . Wang, P. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. The American Journal of Psychiatry, 167(7), 748-751. https://doi.org/10.1176/appi.ajp.2010.09091379

Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in Human Neuroscience, 4, 186. https://doi.org/10.3389/fnhum.2010.00186

Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15(8), 1395-1399. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11994134

Joormann, J., & Gotlib, I. H. (2008). Updating the contents of working memory in depression: interference from irrelevant negative material. Journal of Abnormal Psychology, 117(1), 182-192. https://doi.org/10.1037/0021-843X.117.1.182

Kessler, Y. (2017). The Role of Working Memory Gating in Task Switching: A Procedural Version of the Reference-Back Paradigm. Frontiers in Psychology, 8, 2260. https://doi.org/10.3389/fpsyg.2017.02260

Kessler, Y., & Oberauer, K. (2015). Forward scanning in verbal working memory updating. Psychonomic Bulletin & Review, 22(6), 1770-1776. https://doi.org/10.3758/s13423-015-0853-0

Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26(1-3), 319-340. Retrieved from <Go to ISI>://A1997XF06600022

Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12), 606-617. https://doi.org/10.1016/j.tics.2012.10.007

Kofler, M. J., Alderson, R. M., Raiker, J. S., Bolden, J., Sarver, D. E., & Rapport, M. D. (2014). Working memory and intraindividual variability as neurocognitive indicators in ADHD: examining competing model predictions. Neuropsychology, 28(3), 459-471. https://doi.org/10.1037/neu0000050

Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577. Retrieved from <Go to ISI>://000168584400022

Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417-441. Retrieved from <Go to ISI>://000078883700005

Lenartowicz, A., Delorme, A., Walshaw, P. D., Cho, A. L., Bilder, R. M., McGough, J. J., . . . Loo, S. K. (2014). Electroencephalography correlates of spatial working memory deficits in attention-deficit/hyperactivity disorder: vigilance, encoding, and maintenance. The Journal of Neuroscience, 34(4), 1171-1182. https://doi.org/10.1523/JNEUROSCI.1765-13.2014

Lenartowicz, A., Escobedo-Quiroz, R., & Cohen, J. D. (2010). Updating of context in working memory: An event-related potential study. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 298-315. Doi https://doi.org/10.3758/Cabn.10.2.298

Lenartowicz, A., Mazaheri, A., Jensen, O., & Loo, S. K. (2018). Aberrant Modulation of Brain Oscillatory Activity and Attentional Impairment in Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry Cogn Neurosci Neuroimaging, 3(1), 19-29. https://doi.org/10.1016/j.bpsc.2017.09.009

Lenartowicz, A., Truong, H., Salgari, G. C., Bilder, R. M., McGough, J., McCracken, J. T., & Loo, S. K. (2019). Alpha modulation during working memory encoding predicts neurocognitive impairment in ADHD. Journal of Child Psychology and Psychiatry, 60(8), 917-926. https://doi.org/10.1111/jcpp.13042

Leonard, C. J., Kaiser, S. T., Robinson, B. M., Kappenman, E. S., Hahn, B., Gold, J. M., & Luck, S. J. (2013). Toward the neural mechanisms of reduced working memory capacity in schizophrenia. Cerebral Cortex, 23(7), 1582-1592. https://doi.org/10.1093/cercor/bhs148

Leszczynski, M., Fell, J., & Axmacher, N. (2015). Rhythmic Working Memory Activation in the Human Hippocampus. Cell Reports, 13(6), 1272-1282. https://doi.org/10.1016/j.celrep.2015.09.081

Lisman, J. E., & Buzsaki, G. (2008). A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophrenia Bulletin, 34(5), 974-980. https://doi.org/10.1093/schbul/sbn060

Lisman, J. E., & Idiart, M. A. (1995). Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science, 267(5203), 1512-1515. https://doi.org/10.1126/science.7878473

Loo, S. K., Humphrey, L. A., Tapio, T., Moilanen, I. K., McGough, J. J., McCracken, J. T., … Smalley, S. L. (2007). Executive functioning among Finnish adolescents with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 46(12), 1594-1604. https://doi.org/10.1097/chi.0b013e3181575014

Lopes da Silva, F. (2013). EEG and MEG: relevance to neuroscience. Neuron, 80(5), 1112-1128. https://doi.org/10.1016/j.neuron.2013.10.017

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281. https://doi.org/10.1038/36846

Michelini, G., Cheung, C. H. M., Kitsune, V., Brandeis, D., Banaschewski, T., McLoughlin, G., . . . Kuntsi, J. (2018). The Etiological Structure of Cognitive-Neurophysiological Impairments in ADHD in Adolescence and Young Adulthood. Journal of Attention Disorders, 1087054718771191. https://doi.org/10.1177/1087054718771191

Miller, G. A. (1956). The magical number seven plus or minus two: some limits on our capacity for processing information. Psychology Revison, 63(2), 81-97. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/13310704

Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal "theta". Progress in Neurobiology, 86(3), 156-185. https://doi.org/10.1016/j.pneurobio.2008.09.005

Muthukumaraswamy, S. D. (2013). High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Frontiers in Human Neuroscience, 7, 138. https://doi.org/10.3389/fnhum.2013.00138

Nee, D. E., & Jonides, J. (2011). Dissociable contributions of prefrontal cortex and the hippocampus to short-term memory: evidence for a 3-state model of memory. NeuroImage, 54(2), 1540-1548. https://doi.org/10.1016/j.neuroimage.2010.09.002

Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7(1), 1-17. https://doi.org/10.3758/cabn.7.1.1

Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus-norepinephrine system. Psychological Bulletin, 131(4), 510-532. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16060800

NIMH. (2011). Research Domains Criteria Initiative - Working Memory: Workshop Proceedings. Bethesda, Maryland, July 11-13 2010. Retrieved from https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/working-memory-workshop-proceedings.shtml

O'Reilly, R. C., & Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Computation, 18(2), 283-328. https://doi.org/10.1162/089976606775093909

Oberauer, K., Süß, H.-M., Schulze, R., Wilhelm, O., & Wittmann, W. W. (2000). Working memory capacity - facets of a cognitive ability construct. Personality and Individual Differences, 29, 1017-1045.

Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. NeuroImage, 27(2), 341-356. Doi https://doi.org/10.1016/J.Neuroimage.2005.04.014

Polania, R., Paulus, W., & Nitsche, M. A. (2012). Noninvasively decoding the contents of visual working memory in the human prefrontal cortex within high-gamma oscillatory patterns. Journal of Cognitive Neuroscience, 24(2), 304-314. https://doi.org/10.1162/jocn_a_00151

Polich, J. (2007). Updating p300: An integrative theory of P3a and P3b Clinical Neurophysiology, 118(10), 2128-2148. Retrieved from <Go to ISI>://000250193200002

Poppe, A. B., Barch, D. M., Carter, C. S., Gold, J. M., Ragland, J. D., Silverstein, S. M., & MacDonald, A. W., 3rd. (2016). Reduced Frontoparietal Activity in Schizophrenia Is Linked to a Specific Deficit in Goal Maintenance: A Multisite Functional Imaging Study. Schizophrenia Bulletin, 42(5), 1149-1157. https://doi.org/10.1093/schbul/sbw036

Potts, G. F. (2004). An ERP index of task relevance evaluation of visual stimuli. Brain and Cognition, 56(1), 5-13. Retrieved from <Go to ISI>://000224313600002

Pribram, K. H., & McGuinness, D. (1975). Arousal, activation, and effort in the control of attention. Psychological Review, 82(2), 116-149. https://doi.org/10.1037/h0076780

Rac-Lubashevsky, R., & Kessler, Y. (2016). Dissociating working memory updating and automatic updating: The reference-back paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 42(6), 951-969. https://doi.org/10.1037/xlm0000219

Ranganath, C., & Blumenfeld, R. S. (2005). Doubts about double dissociations between short- and long-term memory. Trends in Cognitive Sciences, 9(8), 374-380. https://doi.org/10.1016/j.tics.2005.06.009

Rissman, J., Gazzaley, A., & D'Esposito, M. (2008). Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load. Cerebral Cortex, 18(7), 1618-1629. https://doi.org/10.1093/cercor/bhm195

Roberts, B. M., Hsieh, L. T., & Ranganath, C. (2013). Oscillatory activity during maintenance of spatial and temporal information in working memory. Neuropsychologia, 51(2), 349-357. https://doi.org/10.1016/j.neuropsychologia.2012.10.009

Romei, V., Brodbeck, V., Michel, C., Amedi, A., Pascual-Leone, A., & Thut, G. (2008). Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cerebral Cortex, 18(9), 2010-2018. Doi https://doi.org/10.1093/Cercor/Bhm229

Rosahl, S. K., & Knight, R. T. (1995). Role of prefrontal cortex in generation of the contingent negative variation. Cerebral Cortex, 5(2), 123-134. https://doi.org/10.1093/cercor/5.2.123

Rossion, B., & Corentin, J. (2011). The N170: understanding the time-course oof face perception in the human brain. In S. J. Luck (Ed.), The Oxford Handbook of Event-Related Potential Components (pp. 115-142). Oxford University Press.

Roux, F., & Uhlhaas, P. J. (2014). Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information? Trends in Cognitive Sciences, 18(1), 16-25. https://doi.org/10.1016/j.tics.2013.10.010

Roux, F., Wibral, M., Mohr, H. M., Singer, W., & Uhlhaas, P. J. (2012). Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. The Journal of Neuroscience, 32(36), 12411-12420. https://doi.org/10.1523/JNEUROSCI.0421-12.2012

Ruchkin, D. S., Grafman, J., Cameron, K., & Berndt, R. S. (2003). Working memory retention systems: a state of activated long-term memory. The Behavioral and Brain Sciences, 26(6), 709-728; discussion 728-777. https://doi.org/10.1017/s0140525x03000165

Sakai, K., & Passingham, R. E. (2004). Prefrontal selection and medial temporal lobe reactivation in retrieval of short-term verbal information. Cerebral Cortex, 14(8), 914-921. https://doi.org/10.1093/cercor/bhh050

Samaha, J., & Postle, B. R. (2015). The Speed of Alpha-Band Oscillations Predicts the Temporal Resolution of Visual Perception. Current Biology, 25(22), 2985-2990. https://doi.org/10.1016/j.cub.2015.10.007

Sauseng, P., Klimesch, W., Heise, K. F., Gruber, W. R., Holz, E., Karim, A. A., … Hummel, F. C. (2009). Brain oscillatory substrates of visual short-term memory capacity. Current Biology, 19(21), 1846-1852. https://doi.org/10.1016/j.cub.2009.08.062

Stuss, D. T., & Benson, D. F. (1984). Neuropsychological studies of the frontal lobes. Psychological Bulletin, 95(1), 3-28. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6544432

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics, 5th ed. Allyn & Bacon/Pearson Education.

Tanner, D., Morgan-Short, K., & Luck, S. J. (2015). How inappropriate high-pass filters can produce artifactual effects and incorrect conclusions in ERP studies of language and cognition. Psychophysiology, 52(8), 997-1009. https://doi.org/10.1111/psyp.12437

Tanner, D., Norton, J. J., Morgan-Short, K., & Luck, S. J. (2016). On high-pass filter artifacts (they're real) and baseline correction (it's a good idea) in ERP/ERMF analysis. Journal of Neuroscience Methods, 266, 166-170. https://doi.org/10.1016/j.jneumeth.2016.01.002

Tort, A. B., Komorowski, R., Eichenbaum, H., & Kopell, N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. Journal of Neurophysiology, 104(2), 1195-1210. https://doi.org/10.1152/jn.00106.2010

van Vugt, M. K., Schulze-Bonhage, A., Litt, B., Brandt, A., & Kahana, M. J. (2010). Hippocampal gamma oscillations increase with memory load. The Journal of Neuroscience, 30(7), 2694-2699. https://doi.org/10.1523/JNEUROSCI.0567-09.2010

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751. https://doi.org/10.1038/nature02447

Voytek, B., Canolty, R. T., Shestyuk, A., Crone, N. E., Parvizi, J., & Knight, R. T. (2010). Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Frontiers in Human Neuroscience, 4, 191. https://doi.org/10.3389/fnhum.2010.00191

Winkler, I., Debener, S., Muller, K. R., & Tangermann, M. (2015). On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. Annual International Conference IEEE Enginering Medical Biology Social, 2015, 4101-4105. https://doi.org/10.1109/EMBC.2015.7319296

Yuval-Greenberg, S., & Deouell, L. Y. (2009). The broadband-transient induced gamma-band response in scalp EEG reflects the execution of saccades. Brain Topography, 22(1), 3-6. https://doi.org/10.1007/s10548-009-0077-6

Yuval-Greenberg, S., Tomer, O., Keren, A. S., Nelken, I., & Deouell, L. Y. (2008). Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron, 58(3), 429-441. https://doi.org/10.1016/j.neuron.2008.03.027