Neuro-toxic and Reproductive Effects of BPA
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rubin B.S.; Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 2011,127(1-2),27-34
Frye C.A.; Bo E.; Calamandrei G.; Calzà L.; Dessì-Fulgheri F.; Fernández M.; Fusani L.; Kah O.; Kajta M.; Le Page Y.; Patisaul H.B.; Venerosi A.; Wojtowicz A.K.; Panzica G.C.; Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J Neuroendocrinol 2012,24(1),144-159
Richter C.A.; Birnbaum L.S.; Farabollini F.; Newbold R.R.; Rubin B.S.; Talsness C.E.; Vandenbergh J.G.; Walser-Kuntz D.R.; vom Saal F.S.; In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 2007,24(2),199-224
Tavares R.S.; Escada-Rebelo S.; Correia M.; Mota P.C.; Ramalho-Santos J.; The non-genomic effects of endocrine-disrupting chemicals on mammalian sperm. Reproduction 2016,151(1),R1-R13
Peretz J.; Vrooman L.; Ricke W.A.; Hunt P.A.; Ehrlich S.;
Corrales J.; Kristofco L.A.; Steele W.B.; Yates B.S.; Breed C.S.; Williams E.S.; Brooks B.W.; Global assessment of bisphenol a in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response. An Int J 2015,13,1-29
Vandenberg L.N.; Ehrlich S.; Belcher S.M.; Ben-Jonathan N.; Dolinoy D.C.; Hugo E.R.; Hunt P.A.; Newbold R.R.; Rubin B.S.; Saili K.S.; Soto A.M.; Wang H.S.; vom Saal F.S.; Low dose effects of Bisphenol A: An integrated review of in vitro, laboratory animal and epidemiology studies. Endocr Disrupt 2013,1
Le Magueresse-Battistoni B.; Multigner L.; Beausoleil C.; Rousselle C.; Effects of bisphenol A on metabolism and evidences of a mode of action mediated through endocrine disruption. Mol Cell Endocrinol 2018,475,74-91
Chianese R.; Troisi J.; Richards S.; Scafuro M.; Fasano S.; Guida M.; Pierantoni R.; Meccariello R.; Bisphenol A in reproduction: epigenetic effects. Curr Med Chem 2018,25(6),748-770
Nunez A.A.; Kannan K.; Giesy J.P.; Fang J.; Clemens L.G.; Effects of bisphenol A on energy balance and accumulation in brown adipose tissue in rats. Chemosphere 2001,42(8),917-922
Calafat A.M.; Ye X.; Wong L.Y.; Reidy J.A.; Needham L.L.; Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect 2008,116(1),39-44
Mercogliano R.; Santonicola S.; Investigation on bisphenol A levels in human milk and dairy supply chain: A review. Food Chem Toxicol 2018,114,98-107
Dualde P.; Pardo O.; Corpas-Burgos F.; Kuligowski J.; Gormaz M.; Vento M.; Pastor A.; Yusà V.; Biomonitoring of bisphenols A, F, S in human milk and probabilistic risk assessment for breastfed infants. Sci Total Environ 2019,668,797-805
Mørck T.J.; Sorda G.; Bechi N.; Rasmussen B.S.; Nielsen J.B.; Ietta F.; Rytting E.; Mathiesen L.; Paulesu L.; Knudsen L.E.; Placental transport and in vitro effects of Bisphenol A. Reprod Toxicol 2010,30(1),131-137
Corbel T.; Gayrard V.; Puel S.; Lacroix M.Z.; Berrebi A.; Gil S.; Viguié C.; Toutain P.L.; Picard-Hagen N.; Bidirectional placental transfer of Bisphenol A and its main metabolite, Bisphenol A-Glucuronide, in the isolated perfused human placenta. Reprod Toxicol 2014,47,51-58
Enzymes, Flavourings and Processing Aids (CEF). Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J EFSA Panel on Food Contact Materials2015,13(1),3978
EFSA A statement on the developmental immunotoxicity of bisphenol A (BPA): answer to the question from the Dutch Ministry of Health, Welfare and Sport. EFSA J 2016,14(10),4580
Rosenfeld C.S.; Neuroendocrine disruption in animal models due to exposure to bisphenol A analogues. Front Neuroendocrinol 2017,47,123-133
Andra S.S.; Charisiadis P.; Arora M.; van Vliet-Ostaptchouk J.V.; Makris K.C.; Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A. Environ Int 2015,85,352-379
Ullah A.; Pirzada M.; Jahan S.; Ullah H.; Shaheen G.; Rehman H.; Siddiqui M.F.; Butt M.A.; Bisphenol A and its analogs bisphenol B, bisphenol F, and bisphenol S: Comparative in vitro and in vivo studies on the sperms and testicular tissues of rats. Chemosphere 2018,209,508-516
Rochester J.R.; Bolden A.L.; Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ Health Perspect 2015,123(7),643-650
Chianese R.; Coccurello R.; Viggiano A.; Scafuro M.; Fiore M.; Coppola G.; Operto F.F.; Fasano S.; Layé S.; Pierantoni R.; Meccariello R.; Impact of dietary fats on brain functions. Curr Neuropharmacol 2018,16(7),1059-1085
Motti M.L.; D. Angelo S.; Meccariello R.; MicroRNAs, cancer and diet: Facts and new exciting perspectives. Curr Mol Pharmacol 2018,11(2),90-96
D’Angelo S.; Scafuro M.; Meccariello R.; BPA and nutraceuticals, simultaneous effects on endocrine functions. Endocr Metab Immune Disord Drug Targets Epub ahead of print2019,19(5),594-604
Rebuli M.E.; Patisaul H.B.; Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. J Steroid Biochem Mol Biol 2016,160,148-159
Mhaouty-Kodja S.; Belzunces L.P.; Canivenc M.C.; Schroeder H.; Chevrier C.; Pasquier E.; Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED. Mol Cell Endocrinol 2018,475,54-73
Murata M.; Kang J.H.; Bisphenol A.; Bisphenol A.; BPA) and cell signaling pathways. Biotechnol Adv 2018,36(1),311-327
Barouki R.; Melén E.; Herceg Z.; Beckers J.; Chen J.; Karagas M.; Puga A.; Xia Y.; Chadwick L.; Yan W.; Audouze K.; Slama R.; Heindel J.; Grandjean P.; Kawamoto T.; Nohara K.; Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ Int 2018,114,77-86
Doshi T.; Mehta S.S.; Dighe V.; Balasinor N.; Vanage G.; Hypermethylation of estrogen receptor promoter region in adult testis of rats exposed neonatally to bisphenol A. Toxicology 2011,289(2-3),74-82
Dolinoy D.C.; The agouti mouse model: An epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 2008,66(Suppl. 1),S7-S11
Dolinoy D.C.; Huang D.; Jirtle R.L.; Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 2007,104(32),13056-13061
Yaoi T.; Itoh K.; Nakamura K.; Ogi H.; Fujiwara Y.; Fushiki S.; Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun 2008,376(3),563-567
Wolstenholme J.T.; Rissman E.F.; Connelly J.J.; The role of Bisphenol A in shaping the brain, epigenome and behavior. Horm Behav 2011,59(3),296-305
Kim J.H.; Sartor M.A.; Rozek L.S.; Faulk C.; Anderson O.S.; Jones T.R.; Nahar M.S.; Dolinoy D.C.; Perinatal bisphenol A exposure promotes dose-dependent alterations of the mouse methylome. BMC Genomics 2014,15,30
Tse L.A.; Lee P.M.Y.; Ho W.M.; Lam A.T.; Lee M.K.; Ng S.S.M.; He Y.; Leung K.S.; Hartle J.C.; Hu H.; Kan H.; Wang F.; Ng C.F.; Bisphenol A and other environmental risk factors for prostate cancer in Hong Kong. Environ Int 2017,107,1-7
Yin L.; Dai Y.; Jiang X.; Liu Y.; Chen H.; Han F.; Cao J.; Liu J.; Role of DNA methylation in bisphenol A exposed mouse spermatocyte. Environ Toxicol Pharmacol 2016,48,265-271
Zheng H.; Zhou X.; Li D.K.; Yang F.; Pan H.; Li T.; Miao M.; Li R.; Yuan W.; Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men. PLoS One 2017,12(6)
Ferguson-Smith A.C.; Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 2011,12(8),565-575
Susiarjo M.; Sasson I.; Mesaros C.; Bartolomei M.S.; Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet 2013,9(4)
Drobná Z.; Henriksen A.D.; Wolstenholme J.T.; Montiel C.; Lambeth P.S.; Shang S.; Harris E.P.; Zhou C.; Flaws J.A.; Adli M.; Rissman E.F.; Transgenerational effects of bisphenol a on gene expression and DNA methylation of imprinted genes in brain. Endocrinology 2018,159(1),132-144
Eichenlaub-Ritter U.; Pacchierotti F.; Bisphenol A.; Bisphenol a effects on mammalian oogenesis and epigenetic integrity of oocytes: A case study exploring risks of endocrine disrupting chemicals. BioMed Res Int 2015
Doherty L.F.; Bromer J.G.; Zhou Y.; Aldad T.S.; Taylor H.S.; In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 2010,1(3),146-155
Viré E.; Brenner C.; Deplus R.; Blanchon L.; Fraga M.; Didelot C.; Morey L.; Van Eynde A.; Bernard D.; Vanderwinden J.M.; Bollen M.; Esteller M.; Di Croce L.; de Launoit Y.; Fuks F.; The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006,439(7078),871-874
Chen Z.; Zuo X.; He D.; Ding S.; Xu F.; Yang H.; Jin X.; Fan Y.; Ying L.; Tian C.; Ying C.; Long-term exposure to a 'safe' dose of bisphenol A reduced protein acetylation in adult rat testes Sci Rep 2017,9,7
Godlewski J.; Lenart J.; Salinska E.; MicroRNA in brain pathology: Neurodegeneration the other side of the brain cancer. Noncoding RNA 2019,5(1)
Shi C.; Zhang L.; Qin C.; Long non-coding RNAs in brain development, synaptic biology, and Alzheimer’s disease. Brain Res Bull 2017,132,160-169
Sekar S.; Liang W.S.; Circular RNA expression and function in the brain. Noncoding RNA Res 2019,4(1),23-29
Leighton L.J.; Bredy T.W.; Functional interplay between small non-coding RNAs and RNA modification in the brain. Noncoding RNA 2018,4(2)
Noack F.; Calegari F.; Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function. Front Neurosci 2018,12,85
Avissar-Whiting M.; Veiga K.R.; Uhl K.M.; Maccani M.A.; Gagne L.A.; Moen E.L.; Marsit C.J.; Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 2010,29(4),401-406
Derghal A.; Djelloul M.; Trouslard J.; Mounien L.; An emerging role of micro-RNA in the effect of the endocrine disruptors. Front Neurosci 2016,10,318
Gao G.Z.; Zhao Y.; Li H.X.; Li W.; Bisphenol A-elicited miR-146a-5p impairs murine testicular steroidogenesis through negative regulation of Mta3 signaling. Biochem Biophys Res Commun 2018,501(2),478-485
Cho H.; Kim S.J.; Park H.W.; Oh M.J.; Yu S.Y.; Lee S.Y.; Park C.; Han G.R.; Oh J.H.; Hwang S.Y.; Yoon S.J.; A relationship between miRNA and gene expression in the mouse Sertoli cell line after exposure to bisphenol A. Biochip J 2010,4,75-81
Kuruto-Niwa R.; Tateoka Y.; Usuki Y.; Nozawa R.; Measurement of bisphenol A concentrations in human colostrum. Chemosphere 2007,66(6),1160-1164
Guerrero-Bosagna C.; Savenkova M.; Haque M.M.; Nilsson E.; Skinner M.K.; Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility. PLoS One 2013,8(3)
Mendonca K.; Hauser R.; Calafat A.M.; Arbuckle T.E.; Duty S.M.; Bisphenol A concentrations in maternal breast milk and infant urine. Int Arch Occup Environ Health 2014,87(1),13-20
Dobrzyńska M.M.; Gajowik A.; Radzikowska J.; Tyrkiel E.J.; Jankowska-Steifer E.A.; Male-mediated F1 effects in mice exposed to bisphenol A, either alone or in combination with X-irradiation. Mutat Res Genet Toxicol Environ Mutagen 2015,789-790,36-45
Marczylo E.L.; Amoako A.A.; Konje J.C.; Gant T.W.; Marczylo T.H.; Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 2012,7(5),432-439
Mielke H.; Partosch F.; Gundert-Remy U.; The contribution of dermal exposure to the internal exposure of bisphenol A in man. Toxicol Lett 2011,204(2-3),190-198
Marquet F.; Payan J.P.; Beydon D.; Wathier L.; Grandclaude M.C.; Ferrari E.; In vivo and ex vivo percutaneous absorption of [14C]-bisphenol A in rats: a possible extrapolation to human absorption? Arch Toxicol 2011,85(9),1035-1043
Nishikawa M.; Iwano H.; Yanagisawa R.; Koike N.; Inoue H.; Yokota H.; Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ Health Perspect 2010,118(9),1196-1203
Schönfelder G.; Wittfoht W.; Hopp H.; Talsness C.E.; Paul M.; Chahoud I.; Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect 2002,110(11),A703-A707
Takahashi O.; Oishi S.; Disposition of orally administered 2,2-Bis(4-hydroxyphenyl)propane (Bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ Health Perspect 2000,108(10),931-935
Teeguarden J.G.; Twaddle N.C.; Churchwell M.I.; Doerge D.R.; Urine and serum biomonitoring of exposure to environmental estrogens I: Bisphenol A in pregnant women. Food Chem Toxicol 2016,92,129-142
Grandin F.C.; Lacroix M.Z.; Gayrard V.; Viguié C.; Mila H.; de Place A.; Vayssière C.; Morin M.; Corbett J.; Gayrard C.; Gely C.A.; Toutain P.L.; Picard-Hagen N.; Is bisphenol S a safer alternative to bisphenol A in terms of potential fetal exposure? Placental transfer across the perfused human placenta. Chemosphere 2019,221,471-478
Roen E.L.; Wang Y.; Calafat A.M.; Wang S.; Margolis A.; Herbstman J.; Hoepner L.A.; Rauh V.; Perera F.P.; Bisphenol A exposure and behavioral problems among inner city children at 7-9 years of age. Environ Res 2015,142,739-745
Kundakovic M.; Gudsnuk K.; Franks B.; Madrid J.; Miller R.L.; Perera F.P.; Champagne F.A.; Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci USA 2013,110(24),9956-9961
McCaffrey K.A.; Jones B.; Mabrey N.; Weiss B.; Swan S.H.; Patisaul H.B.; Sex specific impact of perinatal bisphenol A (BPA) exposure over a range of orally administered doses on rat hypothalamic sexual differentiation. Neurotoxicology 2013,36(36),55-62
Kohwi M.; Doe C.Q.; Temporal fate specification and neural progenitor competence during development. Nat Rev Neurosci 2013,14(12),823-838
Ohtsuka T.; Kageyama R.; Regulation of temporal properties of neural stem cells and transition timing of neurogenesis and gliogenesis during mammalian neocortical development. Semin Cell Dev Biol pii: S1084-95212019(18),30062-4
Kempermann G.; Jessberger S.; Steiner B.; Kronenberg G.; Milestones of neuronal development in the adult hippocampus. Trends Neurosci 2004,27(8),447-452
Kee N.; Teixeira C.M.; Wang A.H.; Frankland P.W.; Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 2007,10(3),355-362
Zhao C.; Deng W.; Gage F.H.; Mechanisms and functional implications of adult neurogenesis. Cell 2008,132(4),645-660
Stuchlik A.; Dynamic learning and memory, synaptic plasticity and neurogenesis: an update. Front Behav Neurosci 2014,8,106
Cassé F.; Richetin K.; Toni N.; Astrocytes' contribution to adult neurogenesis in physiology and alzheimer's disease. Front. Cell Neurosci 2018,12(432)
Negri-Cesi P.; Bisphenol A.; Bisphenol a interaction with brain development and functions. Dose Response 2015,13(2)
Tiwari S.K.; Agarwal S.; Seth B.; Yadav A.; Ray R.S.; Mishra V.N.; Chaturvedi R.K.; Inhibitory effects of bisphenol-a on neural stem cells proliferation and differentiation in the rat brain are dependent on Wnt/β-Catenin pathway. Mol Neurobiol 2015,52(3),1735-1757
Kim K.; Son T.G.; Kim S.J.; Kim H.S.; Kim T.S.; Han S.Y.; Lee J.; Suppressive effects of bisphenol A on the proliferation of neural progenitor cells. J Toxicol Environ Health A 2007,70(15-16),1288-1295
Kim K.; Son T.G.; Park H.R.; Kim S.J.; Kim H.S.; Kim H.S.; Kim T.S.; Jung K.K.; Han S.Y.; Lee J.; Potencies of bisphenol A on the neuronal differentiation and hippocampal neurogenesis. J Toxicol Environ Health A 2009,72(21-22),1343-1351
Agarwal S.; Tiwari S.K.; Seth B.; Yadav A.; Singh A.; Mudawal A.; Chauhan L.K.; Gupta S.K.; Choubey V.; Tripathi A.; Kumar A.; Ray R.S.; Shukla S.; Parmar D.; Chaturvedi R.K.; Activation of autophagic flux against xenoestrogen Bisphenol-A-induced hippocampal neurodegeneration via AMP kinase (AMPK)/mammalian target of Rapamycin (mTOR) pathways. J Biol Chem 2015,290(34),21163-21184
Li Z.; Zhao K.; Lv X.; Lan Y.; Hu S.; Shi J.; Guan J.; Yang Y.; Lu H.; He H.; Gao F.; He W.; Ulk1 governs nerve growth factor/trka signaling by mediating Rab5 GTPase activation in porcine hemagglutinating encephalomyelitis virus-induced neurodegenerative disorders. J Virol 2018,92(16),e00325-e18
Agarwal S.; Yadav A.; Tiwari S.K.; Seth B.; Chauhan L.K.; Khare P.; Ray R.S.; Chaturvedi R.K.; Dynamin-related Protein 1 inhibition mitigates Bisphenol A-mediated alterations in mitochondrial dynamics and neural stem cell proliferation and differentiation. J Biol Chem 2016,291(31),15923-15939
Jang Y.J.; Park H.R.; Kim T.H.; Yang W.J.; Lee J.J.; Choi S.Y.; Oh S.B.; Lee E.; Park J.H.; Kim H.P.; Kim H.S.; Lee J.; High dose bisphenol A impairs hippocampal neurogenesis in female mice across generations. Toxicology 2012,296(1-3),73-82
Kumar D.; Thakur M.K.; Effect of perinatal exposure to Bisphenol-A on DNA methylation and histone acetylation in cerebral cortex and hippocampus of postnatal male mice. J Toxicol Sci 2017,42(3),281-289
Feng J.; Zhou Y.; Campbell S.L.; Le T.; Li E.; Sweatt J.D.; Silva A.J.; Fan G.; Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 2010,13(4),423-430
Campbell R.R.; Wood M.A.; How the epigenome integrates information and reshapes the synapse. Nat Rev Neurosci 2019,20(3),133-147
Keverne E.B.; Significance of epigenetics for understanding brain development, brain evolution and behaviour. Neuroscience 2014,264,207-217
Bale T.L.; Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 2015,16(6),332-344
Cheong A.; Johnson S.A.; Howald E.C.; Ellersieck M.R.; Camacho L.; Lewis S.M.; Vanlandingham M.M.; Ying J.; Ho S.M.; Rosenfeld C.S.; Gene expression and DNA methylation changes in the hypothalamus and hippocampus of adult rats developmentally exposed to bisphenol A or ethinyl estradiol: a CLARITY-BPA consortium study. Epigenetics 2018,13(7),704-720
Kitraki E.; Nalvarte I.; Alavian-Ghavanini A.; Rüegg J.; Developmental exposure to bisphenol A alters expression and DNA methylation of Fkbp5, an important regulator of the stress response. Mol Cell Endocrinol 2015,417,191-199
Alavian-Ghavanini A.; Lin P.I.; Lind P.M.; Risén Rimfors S.; Halin Lejonklou M.; Dunder L.; Tang M.; Lindh C.; Bornehag C.G.; Rüegg J.; Prenatal bisphenol a exposure is linked to epigenetic changes in glutamate receptor subunit gene Grin2b in female rats and humans. Sci Rep 2018,8(1),11315
Paoletti P.; Bellone C.; Zhou Q.; NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013,14(6),383-400
Aiba T.; Saito T.; Hayashi A.; Sato S.; Yunokawa H.; Maruyama T.; Fujibuchi W.; Ohsako S.; Does the prenatal bisphenol A exposure alter DNA methylation levels in the mouse hippocampus? An analysis using a high-sensitivity methylome technique. Genes Environ 2018,40,12
Hajszan T.; Leranth C.; Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 2010,31(4),519-530
MacLusky N.J.; Hajszan T.; Leranth C.; The environmental estrogen bisphenol a inhibits estradiol-induced hippocampal synaptogenesis. Environ Health Perspect 2005,113(6),675-679
Leranth C.; Petnehazy O.; MacLusky N.J.; Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. J Neurosci 2003,23(5),1588-1592
Leranth C.; Hajszan T.; Szigeti-Buck K.; Bober J.; MacLusky N.J.; Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci USA 2008,105(37),14187-14191
Santoro A.; Spinelli C.C.; Martucciello S.; Nori S.L.; Capunzo M.; Puca A.A.; Ciaglia E.; Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J Leukoc Biol 2018,103(3),509-524
Allen N.J.; Lyons D.A.; Glia as architects of central nervous system formation and function. Science 2018,362(6411),181-185
Ramon-Cañellas P.; Peterson H.P.; Morante J.; From early to late neurogenesis: neural progenitors and the glial niche from a fly’s point of view. Neuroscience 2019,399,39-52
Schwarz J.M.; Sholar P.W.; Bilbo S.D.; Sex differences in microglial colonization of the developing rat brain. J Neurochem 2012,120(6),948-963
Williamson L.L.; Sholar P.W.; Mistry R.S.; Smith S.H.; Bilbo S.D.; Microglia and memory: modulation by early-life infection. J Neurosci 2011,31(43),15511-15521
Rosin J.M.; Kurrasch D.M.; Bisphenol A and microglia: could microglia be responsive to this environmental contaminant during neural development? Am J Physiol Endocrinol Metab 2018,315(2),E279-E285
Sadowski R.N.; Wise L.M.; Park P.Y.; Schantz S.L.; Juraska J.M.; Early exposure to bisphenol A alters neuron and glia number in the rat prefrontal cortex of adult males, but not females. Neuroscience 2014,279,122-131
Wise L.M.; Sadowski R.N.; Kim T.; Willing J.; Juraska J.M.; Long-term effects of adolescent exposure to bisphenol A on neuron and glia number in the rat prefrontal cortex: Differences between the sexes and cell type. Neurotoxicology 2016,53,186-192
Takahashi M.; Komada M.; Miyazawa K.; Goto S.; Ikeda Y.; Bisphenol A exposure induces increased microglia and microglial related factors in the murine embryonic dorsal telencephalon and hypothalamus. Toxicol Lett 2018,284,113-119
Luo G.; Wang S.; Li Z.; Wei R.; Zhang L.; Liu H.; Wang C.; Niu R.; Wang J.; Maternal bisphenol a diet induces anxiety-like behavior in female juvenile with neuroimmune activation. Toxicol Sci 2014,140(2),364-373
Zhu J.; Jiang L.; Liu Y.; Qian W.; Liu J.; Zhou J.; Gao R.; Xiao H.; Wang J.; MAPK and NF-κB pathways are involved in bisphenol A-induced TNF-α and IL-6 production in BV2 microglial cells. Inflammation 2015,38(2),637-648
Bilbo S.D.; Frank A.; Frank A.; Beach award: programming of neuroendocrine function by early-life experience: a critical role for the immune system. Horm Behav 2013,63(5),684-691
Patisaul H.B.; Sullivan A.W.; Radford M.E.; Walker D.M.; Adewale H.B.; Winnik B.; Coughlin J.L.; Buckley B.; Gore A.C.; Anxiogenic effects of developmental bisphenol A exposure are associated with gene expression changes in the juvenile rat amygdala and mitigated by soy. PLoS One 2012,7(9)
Rebuli M.E.; Gibson P.; Rhodes C.L.; Cushing B.S.; Patisaul H.B.; Sex differences in microglial colonization and vulnerabilities to endocrine disruption in the social brain. Gen Comp Endocrinol 2016,238,39-46
Xu X.B.; Fan S.J.; He Y.; Ke X.; Song C.; Xiao Y.; Zhang W.H.; Zhang J.Y.; Yin X.P.; Kato N.; Pan B.X.; Loss of hippocampal oligodendrocytes contributes to the deficit of contextual fear learning in adult rats experiencing early bisphenol A exposure. Mol Neurobiol 2017,54(6),4524-4536
Hu F.; Li T.; Gong H.; Chen Z.; Jin Y.; Xu G.; Wang M.; Bisphenol A impairs synaptic plasticity by both pre- and postsynaptic mechanisms. Adv Sci (Weinh) 2017,4(8)
Ishido M.; Yonemoto J.; Morita M.; Mesencephalic neurodegeneration in the orally administered bisphenol A-caused hyperactive rats. Toxicol Lett 2007,173(1),66-72
Chen Z.; Li T.; Zhang L.; Wang H.; Hu F.; Bisphenol A exposure remodels cognition of male rats attributable to excitatory alterations in the hippocampus and visual cortex. Toxicology 2018,410,132-141
Zhou Y.; Wang Z.; Xia M.; Zhuang S.; Gong X.; Pan J.; Li C.; Fan R.; Pang Q.; Lu S.; Neurotoxicity of low bisphenol A (BPA) exposure for young male mice: Implications for children exposed to environmental levels of BPA. Environ Pollut 2017,229,40-48
Eilam-Stock T.; Serrano P.; Frankfurt M.; Luine V.; Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. Behav Neurosci 2012,126(1),175-185
Kuwahara R.; Kawaguchi S.; Kohara Y.; Cui H.; Yamashita K.; Perinatal exposure to low-dose bisphenol A impairs spatial learning and memory in male rats. J Pharmacol Sci 2013,123(2),132-139
Diaz Weinstein S.; Villafane J.J.; Juliano N.; Bowman R.E.; Adolescent exposure to Bisphenol-A increases anxiety and sucrose preference but impairs spatial memory in rats independent of sex. Brain Res 2013,1529,56-65
Xu X.H.; Wang Y.M.; Zhang J.; Luo Q.Q.; Ye Y.P.; Ruan Q.; Perinatal exposure to bisphenol-A changes N-methyl-D-aspartate receptor expression in the hippocampus of male rat offspring. Environ Toxicol Chem 2010,29(1),176-181
Kubo K.; Arai O.; Ogata R.; Omura M.; Hori T.; Aou S.; Exposure to bisphenol A during the fetal and suckling periods disrupts sexual differentiation of the locus coeruleus and of behavior in the rat. Neurosci Lett 2001,304(1-2),73-76
Kubo K.; Arai O.; Omura M.; Watanabe R.; Ogata R.; Aou S.; Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci Res 2003,45(3),345-356
Elsworth J.D.; Jentsch J.D.; Groman S.M.; Roth R.H.; Redmond E.D.; Leranth C.; Low circulating levels of bisphenol-A induce cognitive deficits and loss of asymmetric spine synapses in dorsolateral prefrontal cortex and hippocampus of adult male monkeys. J Comp Neurol 2015,523(8),1248-1257
Braun J.M.; Yolton K.; Dietrich K.N.; Hornung R.; Ye X.; Calafat A.M.; Lanphear B.P.; Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect 2009,117(12),1945-1952
Braun J.M.; Kalkbrenner A.E.; Calafat A.M.; Yolton K.; Ye X.; Dietrich K.N.; Lanphear B.P.; Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 2011,128(5),873-882
Perera F.; Vishnevetsky J.; Herbstman J.B.; Calafat A.M.; Xiong W.; Rauh V.; Wang S.; Prenatal bisphenol a exposure and child behavior in an inner-city cohort. Environ Health Perspect 2012,120(8),1190-1194
Lim Y.H.; Bae S.; Kim B.N.; Shin C.H.; Lee Y.A.; Kim J.I.; Hong Y.C.; Prenatal and postnatal bisphenol A exposure and social impairment in 4-year-old children. Environ Health 2017,16(1),79
Miodovnik A.; Engel S.M.; Zhu C.; Ye X.; Soorya L.V.; Silva M.J.; Calafat A.M.; Wolff M.S.; Endocrine disruptors and childhood social impairment. Neurotoxicology 2011,32(2),261-267
Carter C.J.; Blizard R.A.; Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochem Int 2016,101,83-109
Thongkorn S.; Kanlayaprasit S.; Jindatip D.; Tencomnao T.; Hu V.W.; Sarachana T.; Sex differences in the effects of prenatal bisphenol A exposure on genes associated with autism spectrum disorder in the hippocampus. Sci Rep 2019,9(1),3038
Harley K.G.; Gunier R.B.; Kogut K.; Johnson C.; Bradman A.; Calafat A.M.; Eskenazi B.; Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ Res 2013,126,43-50
Ghassabian A.; Bell E.M.; Ma W.L.; Sundaram R.; Kannan K.; Buck Louis G.M.; Yeung E.; Concentrations of perfluoroalkyl substances and bisphenol A in newborn dried blood spots and the association with child behavior. Environ Pollut 2018,243(Pt B),1629-1636
Matsushima A.; Liu X.; Okada H.; Shimohigashi M.; Shimohigashi Y.; Bisphenol AF is a full agonist for the estrogen receptor ERalpha but a highly specific antagonist for ERbeta. Environ Health Perspect 2010,118(9),1267-1272
Li Y.; Burns K.A.; Arao Y.; Luh C.J.; Korach K.S.; Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor α and β in vitro. Environ Health Perspect 2012,120(7),1029-1035
Molina-Molina J.M.; Amaya E.; Grimaldi M.; Sáenz J.M.; Real M.; Fernández M.F.; Balaguer P.; Olea N.; In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol Appl Pharmacol 2013,272(1),127-136
Danzl E.; Sei K.; Soda S.; Ike M.; Fujita M.; Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. Int J Environ Res Public Health 2009,6(4),1472-1484
Liao C.; Liu F.; Kannan K.; Bisphenol s, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol a residues. Environ Sci Technol 2012,46(12),6515-6522
Inadera H.; Neurological Effects of Bisphenol A and its Analogues. Int J Med Sci 2015,12(12),926-936
Kim B.; Colon E.; Chawla S.; Vandenberg L.N.; Suvorov A.; Endocrine disruptors alter social behaviors and indirectly influence social hierarchies via changes in body weight. Environ Health 2015,14,64
Ohtani N.; Iwano H.; Suda K.; Tsuji E.; Tanemura K.; Inoue H.; Yokota H.; Adverse effects of maternal exposure to bisphenol F on the anxiety- and depression-like behavior of offspring. J Vet Med Sci 2017,79(2),432-439
Catanese M.C.; Vandenberg L.N.; Bisphenol S.; BPS) alters maternal behavior and brain in mice exposed during pregnancy/lactation and their daughters. Endocrinology 2017,158(3),516-530
Castro B.; Sánchez P.; Torres J.M.; Ortega E.; Bisphenol A, bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats. Environ Res 2015,142,281-287
Lee S.; Kim Y.K.; Shin T.Y.; Kim S.H.; Neurotoxic effects of bisphenol AF on calcium-induced ROS and MAPKs. Neurotox Res 2013,23(3),249-259
Pierantoni R.; Cobellis G.; Meccariello R.; Fasano S.; Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis. Int Rev Cytol 2002,218,69-141
Pierantoni R.; Cobellis G.; Meccariello R.; Cacciola G.; Chianese R.; Chioccarelli T.; Fasano S.; CB1 activity in male reproduction: mammalian and nonmammalian animal models. Vitam Horm 2009,81,367-387
Pierantoni R.; Cobellis G.; Meccariello R.; Cacciola G.; Chianese R.; Chioccarelli T.; Fasano S.; Testicular gonadotropin-releasing hormone activity, progression of spermatogenesis, and sperm transport in vertebrates. Ann N Y Acad Sci 2009,1163,279-291
Cacciola G.; Chianese R.; Chioccarelli T.; Ciaramella V.; Fasano S.; Pierantoni R.; Meccariello R.; Cobellis G.; Cannabinoids and reproduction: A lasting and intriguing history. Pharmac 2010,3,3275-3323
Chianese R.; Chioccarelli T.; Cacciola G.; Ciaramella V.; Fasano S.; Pierantoni R.; Meccariello R.; Cobellis G.; The contribution of lower vertebrate animal models in human reproduction research. Gen Comp Endocrinol 2011,171(1),17-27
Meccariello R.; Chianese R.; Chioccarelli T.; Ciaramella V.; Fasano S.; Pierantoni R.; Cobellis G.; Intra-testicular signals regulate germ cell progression and production of qualitatively mature spermatozoa in vertebrates. Front Endocrinol (Lausanne) 2014,5,69
Chianese R.; Cobellis G.; Chioccarelli T.; Ciaramella V.; Migliaccio M.; Fasano S.; Pierantoni R.; Meccariello R.; Kisspeptins, estrogens and male fertility. Curr Med Chem 2016,23(36),4070-4091
Cobellis G.; Meccariello R.; Chianese R.; Chioccarelli T.; Fasano S.; Pierantoni R.; Effects of neuroendocrine CB1 activity on adult Leydig cells. Front Endocrinol (Lausanne) 2016,7,47
Chianese R.; Colledge W.H.; Fasano S.; Meccariello R.; Editorial: The Multiple Facets of Kisspeptin Activity in Biological Systems. Front Endocrinol (Lausanne) 2018,9,727
Meccariello R.; Fasano S.; Pierantoni R.; Cobellis G.; Modulators of hypothalamic-pituitary-gonadal axis for the control of spermatogenesis and sperm quality in vertebrates. Front Endocrinol (Lausanne) 2014,5,135
Ciaramella V.; Chianese R.; Pariante P.; Fasano S.; Pierantoni R.; Meccariello R.; Expression analysis of gnrh1 and gnrhr1 in spermatogenic cells of rat. Int J Endocrinol 2015,2015
Cobellis G.; Meccariello R.; Pierantoni R.; Fasano S.; Intratesticular signals for progression of germ cell stages in vertebrates. Gen Comp Endocrinol 2003,134(3),220-228
Chianese R.; Ciaramella V.; Fasano S.; Pierantoni R.; Meccariello R.; Kisspeptin regulates steroidogenesis and spermiation in anuran amphibian. Reproduction 2017,154(4),403-414
Chianese R.; Ciaramella V.; Fasano S.; Pierantoni R.; Meccariello R.; Kisspeptin drives germ cell progression in the anuran amphibian Pelophylax esculentus: a study carried out in ex vivo testes. Gen Comp Endocrinol 2015,211,81-91
Huo X.; Chen D.; He Y.; Zhu W.; Zhou W.; Zhang J.; Bisphenol-A and Female Infertility: A Possible Role of Gene-Environment Interactions. Int J Environ Res Public Health 2015,12(9),11101-11116
Cariati F.; D’Uonno N.; Borrillo F.; Iervolino S.; Galdiero G.; Tomaiuolo R.; Bisphenol a: an emerging threat to male fertility. Reprod Biol Endocrinol 2019,17(1),6
Franssen D.; Gérard A.; Hennuy B.; Donneau A.F.; Bourguignon J.P.; Parent A.S.; Delayed neuroendocrine sexual maturation in female rats after a very low dose of bisphenol a through altered GABAergic neurotransmission and opposing effects of a high dose. Endocrinology 2016,157(5),1740-1750
Oliveira I.M.; Romano R.M.; de Campos P.; Cavallin M.D.; Oliveira C.A.; Romano M.A.; Delayed onset of puberty in male offspring from bisphenol A-treated dams is followed by the modulation of gene expression in the hypothalamic-pituitary-testis axis in adulthood. Reprod Fertil Dev 2017,29(12),2496-2505
de Roux N.; Genin E.; Carel J.C.; Matsuda F.; Chaussain J.L.; Milgrom E.; Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003,100(19),10972-10976, 10972, 10976.
Seminara S.B.; Messager S.; Chatzidaki E.E.; Thresher R.R.; Acierno J.S.; Shagoury J.K.; Bo-Abbas Y.; Kuohung W.; Schwinof K.M.; Hendrick A.G.; Zahn D.; Dixon J.; Kaiser U.B.; Slaugenhaupt S.A.; Gusella J.F.; O’Rahilly S.; Carlton M.B.; Crowley W.F.; Aparicio S.A.; Colledge W.H.; The GPR54 gene as a regulator of puberty. N Engl J Med 2003,349(17),1614-1627
Pinilla L.; Aguilar E.; Dieguez C.; Millar R.P.; Tena-Sempere M.; Kisspeptins and reproduction: Physiological roles and regulatory mechanisms. Physiol Rev 2012,92(3),1235-1316
Patisaul H.B.; Todd K.L.; Mickens J.A.; Adewale H.B.; Impact of neonatal exposure to the ERalpha agonist PPT, bisphenol-A or phytoestrogens on hypothalamic kisspeptin fiber density in male and female rats. Neurotoxicology 2009,30(3),350-357
Cao J.; Mickens J.A.; McCaffrey K.A.; Leyrer S.M.; Patisaul H.B.; Neonatal bisphenol a exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus. Neurotoxicology 2012,33(1),23-36
Arambula S.E.; Fuchs J.; Cao J.; Patisaul H.B.; Effects of perinatal bisphenol A exposure on the volume of sexually-dimorphic nuclei of juvenile rats: A CLARITY-BPA consortium study. Neurotoxicology 2017,63,33-42
Arambula S.E.; Belcher S.M.; Planchart A.; Turner S.D.; Patisaul H.B.; Impact of low dose oral exposure to bisphenol a (BPA) on the neonatal rat hypothalamic and hippocampal transcriptome: A CLARITY-BPA consortium study. Endocrinology 2016,157(10),3856-3872
Kurian J.R.; Keen K.L.; Kenealy B.P.; Garcia J.P.; Hedman C.J.; Terasawa E.; Acute influences of bisphenol a exposure on hypothalamic release of gonadotropin-releasing hormone and kisspeptin in female rhesus monkeys. Endocrinology 2015,156(7),2563-2570
Klenke U.; Constantin S.; Wray S.; BPA directly decreases GnRH neuronal activity via noncanonical pathway. Endocrinology 2016,157(5),1980-1990
McIlwraith E.K.; Loganathan N.; Belsham D.D.; Phoenixin expression is regulated by the fatty acids palmitate, docosahexaenoic acid and oleate, and the endocrine disrupting chemical bisphenol a in immortalized hypothalamic neurons. Front Neurosci 2018,12,838
McIlwraith E.K.; Loganathan N.; Belsham DD.; Regulation of Gpr173 expression, a putative phoenixin receptor, by saturated fatty acid palmitate and endocrine-disrupting chemical bisphenol A through a p38-mediated mechanism in immortalized hypothalamic neurons. Mol Cell Endocrinol pii: S0303-72072019(19),30038-3
Errico S.; Portaccio M.; Nicolucci C.; Meccariello R.; Chianese R.; Scafuro M.; Lepore M.; Diano N.; A novel experimental approach for liver analysis in rats exposed to Bisphenol A by means of LC-mass spectrometry and infrared spectroscopy. J Pharm Biomed Anal 2019,165,207-212
Shu L.; Meng Q.; Diamante G.; Tsai B.; Chen Y.W.; Mikhail A.; Luk H.; Ritz B.; Allard P.; Yang X.; Prenatal bisphenol a exposure in mice induces multitissue multiomics disruptions linking to cardiometabolic disorders. Endocrinology 2019,160(2),409-429
Friedman J.M.; Halaas J.L.; Leptin and the regulation of body weight in mammals. Nature 1998,395(6704),763-770
Smith J.T.; Acohido B.V.; Clifton D.K.; Steiner R.A.; KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 2006,18(4),298-303
Castellano J.M.; Navarro V.M.; Fernández-Fernández R.; Nogueiras R.; Tovar S.; Roa J.; Vazquez M.J.; Vigo E.; Casanueva F.F.; Aguilar E.; Pinilla L.; Dieguez C.; Tena-Sempere M.; Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 2005,146(9),3917-3925
Castellano J.M.; Navarro V.M.; Roa J.; Pineda R.; Sánchez-Garrido M.A.; García-Galiano D.; Vigo E.; Dieguez C.; Aguilar E.; Pinilla L.; Tena-Sempere M.; Alterations in hypothalamic KiSS-1 system in experimental diabetes: early changes and functional consequences. Endocrinology 2009,150(2),784-794
Dudek M.; Kołodziejski P.A.; Pruszyńska-Oszmałek E.; Sassek M.; Ziarniak K.; Nowak K.W.; Sliwowska J.H.; Effects of high-fat diet-induced obesity and diabetes on Kiss1 and GPR54 expression in the hypothalamic-pituitary-gonadal (HPG) axis and peripheral organs (fat, pancreas and liver) in male rats. Neuropeptides 2016,56,41-49
Roepke T.A.; Yang J.A.; Yasrebi A.; Mamounis K.J.; Oruc E.; Zama A.M.; Uzumcu M.; Regulation of arcuate genes by developmental exposures to endocrine-disrupting compounds in female rats. Reprod Toxicol 2016,62,18-26
Desai M.; Ferrini M.G.; Han G.; Jellyman J.K.; Ross M.G.; In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. Environ Res 2018,164,45-52
Cornejo M.P.; Hentges S.T.; Maliqueo M.; Coirini H.; Becu-Villalobos D.; Elias C.F.; Neuroendocrine Regulation of Metabolism. J Neuroendocrinol 2016,28(7),12395
Wilson J.L.; Enriori P.J.; A talk between fat tissue, gut, pancreas and brain to control body weight. Mol Cell Endocrinol 2015,418(Pt 2),108-119
Salehi A.; Loganathan N.; Belsham D.D.; Bisphenol A induces Pomc gene expression through neuroinflammatory and PPARγ nuclear receptor-mediated mechanisms in POMC-expressing hypothalamic neuronal models. Mol Cell Endocrinol 2019,479,12-19
MacKay H.; Patterson Z.R.; Abizaid A.; Perinatal Exposure to low-dose bisphenol-a disrupts the structural and functional development of the hypothalamic feeding circuitry. Endocrinology 2017,158(4),768-777
Rezg R.; Abot A.; Mornagui B.; Aydi S.; Knauf C.; Effects of Bisphenol S on hypothalamic neuropeptides regulating feeding behavior and apelin/APJ system in mice. Ecotoxicol Environ Saf 2018,161,459-466
Pagotto U.; Marsicano G.; Cota D.; Lutz B.; Pasquali R.; The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 2006,27(1),73-100
Battista N.; Meccariello R.; Cobellis G.; Fasano S.; Di Tommaso M.; Pirazzi V.; Konje J.C.; Pierantoni R.; Maccarrone M.; The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. Mol Cell Endocrinol 2012,355(1),1-14
Meccariello R.; Battista N.; Bradshaw H.B.; Wang H.; Updates in reproduction coming from the endocannabinoid system. Int J Endocrinol 2014,2014
Bovolin P.; Cottone E.; Pomatto V.; Fasano S.; Pierantoni R.; Cobellis G.; Meccariello R.; Endocannabinoids are involved in male vertebrate reproduction: regulatory mechanisms at central and gonadal level. Front Endocrinol (Lausanne) 2014,5,54
Meccariello R.; Franzoni M.F.; Chianese R.; Cottone E.; Scarpa D.; Donna D.; Cobellis G.; Guastalla A.; Pierantoni R.; Fasano S.; Interplay between the endocannabinoid system and GnRH-I in the forebrain of the anuran amphibian Rana esculenta. Endocrinology 2008,149(5),2149-2158
Chianese R.; Cobellis G.; Pierantoni R.; Fasano S.; Meccariello R.; Non-mammalian vertebrate models and the endocannabinoid system: relationships with gonadotropin-releasing hormone. Mol Cell Endocrinol 2008,286(1-2)(Suppl. 1),S46-S51
Ciaramella V.; Meccariello R.; Chioccarelli T.; Sirleto M.; Fasano S.; Pierantoni R.; Chianese R.; Anandamide acts via kisspeptin in the regulation of testicular activity of the frog, Pelophylax esculentus. Mol Cell Endocrinol 2016,420,75-84
Osei-Hyiaman D.; Depetrillo M.; Harvey-White J.; Bannon A.W.; Cravatt B.F.; Kuhar M.J.; Mackie K.; Palkovits M.; Kunos G.; Cocaine- and amphetamine-related transcript is involved in the orexigenic effect of endogenous anandamide. Neuroendocrinology 2005,81(4),273-282
Suglia A.; Chianese R.; Migliaccio M.; Ambrosino C.; Fasano S.; Pierantoni R.; Cobellis G.; Chioccarelli T.; Bisphenol A induces hypothalamic down-regulation of the the cannabinoid receptor 1 and anorexigenic effects in male mice. Pharmacol Res 2016,113(Pt A),376-383
Loganathan N.; Salehi A.; Chalmers J.A.; Belsham D.D.; Bisphenol A.; Bisphenol a alters bmal1, Per2, and Rev-Erba mRNA and requires bmal1 to increase neuropeptide Y expression in hypothalamic neurons. Endocrinology 2019,160(1),181-192
Chen W.; Lau S.W.; Fan Y.; Wu R.S.S.; Ge W.; Juvenile exposure to bisphenol A promotes ovarian differentiation but suppresses its growth - Potential involvement of pituitary follicle-stimulating hormone. Aquat Toxicol 2017,193,111-121
Maffini M.V.; Rubin B.S.; Sonnenschein C.; Soto A.M.; Endocrine disruptors and reproductive health: The case of bisphenol-A. Mol Cell Endocrinol 2006,254-255,179-186
Zhang H-Q.; Zhang X-F.; Zhang L-J.; Chao H-H.; Pan B.; Feng Y-M.; Li L.; Sun X.F.; Shen W.; Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Mol Biol Rep 2012,39(5),5651-5657
Susiarjo M.; Hassold T.J.; Freeman E.; Hunt P.A.; Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet 2007,3(1)
Hunt P.A.; Lawson C.; Gieske M.; Murdoch B.; Smith H.; Marre A.; Hassold T.; VandeVoort C.A.; Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc Natl Acad Sci USA 2012,109(43),17525-17530
Karavan J.R.; Pepling M.E.; Effects of estrogenic compounds on neonatal oocyte development. Reprod Toxicol 2012,34(1),51-56
Rodríguez H.A.; Santambrosio N.; Santamaría C.G.; Muñoz-de-Toro M.; Luque E.H.; Neonatal exposure to bisphenol A reduces the pool of primordial follicles in the rat ovary. Reprod Toxicol 2010,30(4),550-557
Chao H-H.; Zhang X-F.; Chen B.; Pan B.; Zhang L-J.; Li L.; Sun X-F.; Shi Q-H.; Shen W.; Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Histochem Cell Biol 2012,137(2),249-259
Laing L.V.; Viana J.; Dempster E.L.; Trznadel M.; Trunkfield L.A.; Uren Webster T.M.; van Aerle R.; Paull G.C.; Wilson R.J.; Mill J.; Santos E.M.; Bisphenol A causes reproductive toxicity, decreases dnmt1 transcription, and reduces global DNA methylation in breeding zebrafish (Danio rerio). Epigenetics 2016,11(7),526-538
Liu Y.; Yuan C.; Chen S.; Zheng Y.; Zhang Y.; Gao J.; Wang Z.; Global and cyp19a1a gene specific DNA methylation in gonads of adult rare minnow Gobiocypris rarus under bisphenol A exposure. Aquat Toxicol 2014,156,10-16
Santangeli S.; Maradonna F.; Gioacchini G.; Cobellis G.; Piccinetti C.C.; Dalla Valle L.; Carnevali O.; BPA-induced deregulation of epigenetic patterns: Effects on female zebrafish reproduction. Sci Rep 2016,6,21982
Kandaraki E.; Chatzigeorgiou A.; Livadas S.; Palioura E.; Economou F.; Koutsilieris M.; Palimeri S.; Panidis D.; Diamanti-Kandarakis E.; Endocrine disruptors and polycystic ovary syndrome (PCOS): Elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab 2011,96(3),E480-E484
Rutkowska A.; Rachoń D.; Bisphenol A.; Bisphenol A.; BPA) and its potential role in the pathogenesis of the polycystic ovary syndrome (PCOS). Gynecol Endocrinol 2014,30(4),260-265
Takeuchi T.; Tsutsumi O.; Serum bisphenol a concentrations showed gender differences, possibly linked to androgen levels. Biochem Biophys Res Commun 2002,291(1),76-78
Takeuchi T.; Tsutsumi O.; Ikezuki Y.; Takai Y.; Taketani Y.; Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J 2004,51(2),165-169
Zhou W.; Liu J.; Liao L.; Han S.; Liu J.; Effect of bisphenol A on steroid hormone production in rat ovarian theca-interstitial and granulosa cells. Mol Cell Endocrinol 2008,283(1-2),12-18
Fernández M.; Bourguignon N.; Lux-Lantos V.; Libertun C.; Neonatal exposure to bisphenol a and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ Health Perspect 2010,118(9),1217-1222
Seachrist D.D.; Bonk K.W.; Ho S-M.; Prins G.S.; Soto A.M.; Keri R.A.; A review of the carcinogenic potential of bisphenol A. Reprod Toxicol 2016,59,167-182
Mallozzi M.; Leone C.; Manurita F.; Bellati F.; Caserta D.; Endocrine disrupting chemicals and endometrial cancer: An overview of recent laboratory evidence and epidemiological studies. Int J Environ Res Public Health 2017,14(3),14
Aghajanova L.; Giudice L.C.; Effect of bisphenol A on human endometrial stromal fibroblasts in vitro. Reprod Biomed Online 2011,22(3),249-256
Pollock T.; deCatanzaro D.; Presence and bioavailability of bisphenol A in the uterus of rats and mice following single and repeated dietary administration at low doses. Reprod Toxicol 2014,49,145-154
Diamanti-Kandarakis E.; Bourguignon J-P.; Giudice L.C.; Hauser R.; Prins G.S.; Soto A.M.; Zoeller R.T.; Gore A.C.; Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr Rev 2009,30(4),293-342
Aldad T.S.; Rahmani N.; Leranth C.; Taylor H.S.; Bisphenol-A exposure alters endometrial progesterone receptor expression in the nonhuman primate. Fertil Steril 2011,96(1),175-179
Hiroi H.; Tsutsumi O.; Takeuchi T.; Momoeda M.; Ikezuki Y.; Okamura A.; Yokota H.; Taketani Y.; Differences in serum bisphenol a concentrations in premenopausal normal women and women with endometrial hyperplasia. Endocr J 2004,51(6),595-600
Han T.S.; Lean M.E.; A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc Dis 2016,5
Shafiee M.N.; Seedhouse C.; Mongan N.; Chapman C.; Deen S.; Abu J.; Atiomo W.; Up-regulation of genes involved in the insulin signalling pathway (IGF1, PTEN and IGFBP1) in the endometrium may link polycystic ovarian syndrome and endometrial cancer. Mol Cell Endocrinol 2016,424,94-101
Dickerson S.M.; Gore A.C.; Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev Endocr Metab Disord 2007,8(2),143-159
Rich A.L.; Phipps L.M.; Tiwari S.; Rudraraju H.; Dokpesi P.O.; The increasing prevalence in intersex variation from toxicological dysregulation in fetal reproductive tissue differentiation and development by endocrine-disrupting chemicals. Environ Health Insights 2016,10,163-171
Strakovsky R.S.; Schantz S.L.; Impacts of bisphenol A (BPA) and phthalate exposures on epigenetic outcomes in the human placenta. Environ Epigenet 2018,4(3)
Newbold R.R.; Jefferson W.N.; Padilla-Banks E.; Prenatal exposure to bisphenol a at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environ Health Perspect 2009,117(6),879-885
Pinney S.E.; Mesaros C.A.; Snyder N.W.; Busch C.M.; Xiao R.; Aijaz S.; Ijaz N.; Blair I.A.; Manson J.M.; Second trimester amniotic fluid bisphenol A concentration is associated with decreased birth weight in term infants. Reprod Toxicol 2017,67,1-9
Snijder C.A.; Heederik D.; Pierik F.H.; Hofman A.; Jaddoe V.W.; Koch H.M.; Longnecker M.P.; Burdorf A.; Fetal growth and prenatal exposure to bisphenol A: the generation R study. Environ Health Perspect 2013,121(3),393-398
Burstyn I.; Martin J.W.; Beesoon S.; Bamforth F.; Li Q.; Yasui Y.; Cherry N.M.; Maternal exposure to bisphenol-A and fetal growth restriction: a case-referent study. Int J Environ Res Public Health 2013,10(12),7001-7014
Casas M.; Valvi D.; Ballesteros-Gomez A.; Gascon M.; Fernández M.F.; Garcia-Esteban R.; Iñiguez C.; Martínez D.; Murcia M.; Monfort N.; Luque N.; Rubio S.; Ventura R.; Sunyer J.; Vrijheid M.; Exposure to bisphenol a and phthalates during pregnancy and ultrasound measures of fetal growth in the INMA-sabadell cohort. Environ Health Perspect 2016,124(4),521-528
Xu X.; Chiung Y.M.; Lu F.; Qiu S.; Ji M.; Huo X.; Associations of cadmium, bisphenol A and polychlorinated biphenyl co-exposure in utero with placental gene expression and neonatal outcomes. Reprod Toxicol 2015,52,62-70
Morrissey R.E.; George J.D.; Price C.J.; Tyl R.W.; Marr M.C.; Kimmel C.A.; The developmental toxicity of bisphenol A in rats and mice. Fundam Appl Toxicol 1987,8(4),571-582
Miao M.; Yuan W.; He Y.; Zhou Z.; Wang J.; Gao E.; Li G.; Li D-K.; In utero exposure to bisphenol-A and anogenital distance of male offspring. Birth Defects Res A Clin Mol Teratol 2011,91(10),867-872
Huo W.; Xia W.; Wan Y.; Zhang B.; Zhou A.; Zhang Y.; Huang K.; Zhu Y.; Wu C.; Peng Y.; Jiang M.; Hu J.; Chang H.; Xu B.; Li Y.; Xu S.; Maternal urinary bisphenol A levels and infant low birth weight: A nested case-control study of the Health Baby Cohort in China. Environ Int 2015,85,96-103
Troisi J.; Mikelson C.; Richards S.; Symes S.; Adair D.; Zullo F.; Guida M.; Placental concentrations of bisphenol A and birth weight from births in the Southeastern U.S. Placenta 2014,35(11),947-952
Behnia F.; Peltier M.; Getahun D.; Watson C.; Saade G.; Menon R.; High bisphenol A (BPA) concentration in the maternal, but not fetal, compartment increases the risk of spontaneous preterm delivery. J Matern Fetal Neonatal Med 2016,29(22),3583-3589
Cantonwine D.E.; Ferguson K.K.; Mukherjee B.; McElrath T.F.; Meeker J.D.; Urinary Bisphenol A Levels during Pregnancy and Risk of Preterm Birth. Environ Health Perspect 2015,123(9),895-901
Weinberger B.; Vetrano A.M.; Archer F.E.; Marcella S.W.; Buckley B.; Wartenberg D.; Robson M.G.; Klim J.; Azhar S.; Cavin S.; Wang L.; Rich D.Q.; Effects of maternal exposure to phthalates and bisphenol A during pregnancy on gestational age. J Matern Fetal Neonatal Med 2014,27(4),323-327
Padmanabhan V.; Siefert K.; Ransom S.; Johnson T.; Pinkerton J.; Anderson L.; Tao L.; Kannan K.; Maternal bisphenol-A levels at delivery: a looming problem? J Perinatol 2008,28(4),258-263
Smarr M.M.; Grantz K.L.; Sundaram R.; Maisog J.M.; Kannan K.; Louis G.M.B.; Parental urinary biomarkers of preconception exposure to bisphenol A and phthalates in relation to birth outcomes. Environ Health 2015,14,73
Guida M.; Troisi J.; Ciccone C.; Granozio G.; Cosimato C.; Di Spiezio Sardo A.; Ferrara C.; Guida M.; Nappi C.; Zullo F.; Di Carlo C.; Bisphenol A and congenital developmental defects in humans. Mutat Res 2015,774,33-39
Balakrishnan B.; Henare K.; Thorstensen E.B.; Ponnampalam A.P.; Mitchell M.D.; Transfer of bisphenol A across the human placenta. Am J Obstet Gynecol 2010,202(4),393.e1-393.e7
Machtinger R.; Combelles C.M.H.; Missmer S.A.; Correia K.F.; Williams P.; Hauser R.; Racowsky C.; Bisphenol-A and human oocyte maturation in vitro. Hum Reprod 2013,28(10),2735-2745
Christiansen S.; Axelstad M.; Boberg J.; Vinggaard A.M.; Pedersen G.A.; Hass U.; Low-dose effects of bisphenol A on early sexual development in male and female rats. Reproduction 2014,147(4),477-487
Timms B.G.; Howdeshell K.L.; Barton L.; Bradley S.; Richter C.A.; vom Saal F.S.; Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc Natl Acad Sci USA 2005,102(19),7014-7019
Ho S-M.; Tang W-Y.; Belmonte de Frausto J.; Prins G.S.; Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 2006,66(11),5624-5632
Chen J.; Wu S.; Wen S.; Shen L.; Peng J.; Yan C.; Cao X.; Zhou Y.; Long C.; Lin T.; He D.; Hua Y.; Wei G.; The mechanism of environmental endocrine disruptors (DEHP) induces epigenetic transgenerational inheritance of cryptorchidism. PLoS One 2015,10(6)
Fernández M.F.; Arrebola J.P.; Jiménez-Díaz I.; Sáenz J.M.; Molina-Molina J.M.; Ballesteros O.; Kortenkamp A.; Olea N.; Bisphenol A and other phenols in human placenta from children with cryptorchidism or hypospadias. Reprod Toxicol 2016,59,89-95
Fiorini C.; Tilloy-Ellul A.; Chevalier S.; Charuel C.; Pointis G.; Sertoli cell junctional proteins as early targets for different classes of reproductive toxicants. Reprod Toxicol 2004,18(3),413-421
Salian S.; Doshi T.; Vanage G.; Neonatal exposure of male rats to Bisphenol A impairs fertility and expression of sertoli cell junctional proteins in the testis. Toxicology 2009,265(1-2),56-67
Chianese R.; Viggiano A.; Urbanek K.; Cappetta D.; Troisi J.; Scafuro M.; Guida M.; Esposito G.; Ciuffreda L.P.; Rossi F.; Berrino L.; Fasano S.; Pierantoni R.; De Angelis A.; Meccariello R.; Chronic exposure to low dose of bisphenol A impacts on the first round of spermatogenesis via SIRT1 modulation. Sci Rep 2018,8(1),2961
Zhang G.L.; Zhang X.F.; Feng Y.M.; Li L.; Huynh E.; Sun X.F.; Sun Z.Y.; Shen W.; Exposure to bisphenol A results in a decline in mouse spermatogenesis. Reprod Fertil Dev 2013,25(6),847-859
Xie M.; Bu P.; Li F.; Lan S.; Wu H.; Yuan L.; Wang Y.; Neonatal bisphenol A exposure induces meiotic arrest and apoptosis of spermatogenic cells. Oncotarget 2016,7(9),10606-10615
Liu C.; Duan W.; Li R.; Xu S.; Zhang L.; Chen C.; He M.; Lu Y.; Wu H.; Pi H.; Luo X.; Zhang Y.; Zhong M.; Yu Z.; Zhou Z.; Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity. Cell Death Dis 2013,4
Allard P.; Colaiácovo M.P.; Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc Natl Acad Sci USA 2010,107(47),20405-20410
Horan T.S.; Pulcastro H.; Lawson C.; Gerona R.; Martin S.; Gieske M.C.; Sartain C.V.; Hunt P.A.; Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent Generations. Curr Biol 2018,28(18),2948-2954.e3
Sasaki M.; Lange J.; Keeney S.; Genome destabilization by homologous recombination in the germ line. Nat Rev Mol Cell Biol 2010,11(3),182-195
Mínguez-Alarcón L.; Hauser R.; Gaskins A.J.; Effects of bisphenol A on male and couple reproductive health: A review. Fertil Steril 2016,106(4),864-870
Meeker J.D.; Ehrlich S.; Toth T.L.; Wright D.L.; Calafat A.M.; Trisini A.T.; Ye X.; Hauser R.; Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod Toxicol 2010,30(4),532-539
Rahman M.S.; Kwon W.S.; Lee J.S.; Yoon S.J.; Ryu B.Y.; Pang M.G.; Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci Rep 2015,5,9169
Li J.; Mao R.; Zhou Q.; Ding L.; Tao J.; Ran M.M.; Gao E.S.; Yuan W.; Wang J.T.; Hou L.F.; Exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of ERK signal pathway. Toxicol Mech Methods 2016,26(3),180-188
Kotwicka M.; Skibinska I.; Piworun N.; Jendraszak M.; Chmielewska M.; Jedrzejczak P.; Bisphenol A modifies human spermatozoa motility in vitro. J Medical Sci 2016,85,39-45
Lan H.C.; Wu K.Y.; Lin I.W.; Yang Z.J.; Chang A.A.; Hu M.C.; Bisphenol A disrupts steroidogenesis and induces a sex hormone imbalance through c-Jun phosphorylation in Leydig cells. Chemosphere 2017,185,237-246
Feng Y.; Jiao Z.; Shi J.; Li M.; Guo Q.; Shao B.; Effects of bisphenol analogues on steroidogenic gene expression and hormone synthesis in H295R cells. Chemosphere 2016,147,9-19
Ullah A.; Pirzada M.; Jahan S.; Ullah H.; Turi N.; Ullah W.; Siddiqui M.F.; Zakria M.; Lodhi K.Z.; Khan M.M.; Impact of low-dose chronic exposure to bisphenol A and its analogue bisphenol B, bisphenol F and bisphenol S on hypothalamo-pituitary-testicular activities in adult rats: A focus on the possible hormonal mode of action. Food Chem Toxicol 2018,121,24-36
Desdoits-Lethimonier C.; Lesné L.; Gaudriault P.; Zalko D.; Antignac J.P.; Deceuninck Y.; Platel C.; Dejucq-Rainsford N.; Mazaud-Guittot S.; Jégou B.; Parallel assessment of the effects of bisphenol A and several of its analogs on the adult human testis. Hum Reprod 2017,32(7),1465-1473
Roelofs M.J.; van den Berg M.; Bovee T.F.; Piersma A.H.; van Duursen M.B.; Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor. Toxicology 2015,329,10-20
Eladak S.; Grisin T.; Moison D.; Guerquin M.J.; N’Tumba-Byn T.; Pozzi-Gaudin S.; Benachi A.; Livera G.; Rouiller-Fabre V.; Habert R.; A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil Steril 2015,103(1),11-21
Kokkinaki M.; Lee T.L.; He Z.; Jiang J.; Golestaneh N.; Hofmann M.C.; Chan W.Y.; Dym M.; The molecular signature of spermatogonial stem/progenitor cells in the 6-day-old mouse testis. Biol Reprod 2009,80(4),707-717
Liang S.; Yin L.; Shengyang Yu K.; Hofmann M.C.; Yu X.; High-Content Analysis Provides Mechanistic Insights into the Testicular Toxicity of Bisphenol A and Selected Analogues in Mouse Spermatogonial Cells. Toxicol Sci 2017,155(1),43-60
Sidorkiewicz I.; Czerniecki J.; Jarząbek K.; Zbucka-Krętowska M.; Wołczyński S.; Cellular, transcriptomic and methylome effects of individual and combined exposure to BPA, BPF, BPS on mouse spermatocyte GC-2 cell line. Toxicol Appl Pharmacol 2018,359,1-11
Shi M.; Sekulovskii N.; MacLean J.A. II; Hayashi K.; Effects of bisphenol A analogues on reproductive functions in mice. Reprod Toxicol 2017,73,280-291
Shi M.; Sekulovski N.; MacLean J.A.; Hayashi K.; Prenatal exposure to bisphenol a analogues on male reproductive functions in mice. Toxicol Sci 2018,163(2),620-31
Liu C.; Wang H.; Shang Y.; Liu W.; Song Z.; Zhao H.; Wang L.; Jia P.; Gao F.; Xu Z.; Yang L.; Gao F.; Li W.; Autophagy is required for ectoplasmic specialization assembly in sertoli cells. Autophagy 2016,12(5),814-832
Ullah H.; Ambreen A.; Ahsan N.; Jahan S.; Bisphenol S induces oxidative stress and DNA damage in rat spermatozoa in vitro and disrupts daily sperm production in vivo. J. Toxicol. Environmental. Chem 2017,99,953-965