Neuro-toxic and Reproductive Effects of BPA

Current Neuropharmacology - Tập 17 Số 12 - Trang 1109-1132 - 2019
Antonietta Santoro1, Rosanna Chianese2, Jacopo Troisi1, Sean Richards3, Stefania Lucia Nori1, Silvia Fasano2, Maurizio Guida1, Elizabeth Plunk3, Andrea Viggiano1, Riccardo Pierantoni2, Rosaria Meccariello4
1Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, Baronissi (SA), Italy
2Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Caserta, Italy
3University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
4Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy

Tóm tắt

Background:Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility.Methods:This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its analogues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction.Results:BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal differentiation, synaptic plasticity, neuroinflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releasing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy.Conclusion:BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting results have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This review offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.

Từ khóa


Tài liệu tham khảo

Rubin B.S.; Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 2011,127(1-2),27-34

Frye C.A.; Bo E.; Calamandrei G.; Calzà L.; Dessì-Fulgheri F.; Fernández M.; Fusani L.; Kah O.; Kajta M.; Le Page Y.; Patisaul H.B.; Venerosi A.; Wojtowicz A.K.; Panzica G.C.; Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J Neuroendocrinol 2012,24(1),144-159

Richter C.A.; Birnbaum L.S.; Farabollini F.; Newbold R.R.; Rubin B.S.; Talsness C.E.; Vandenbergh J.G.; Walser-Kuntz D.R.; vom Saal F.S.; In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 2007,24(2),199-224

Tavares R.S.; Escada-Rebelo S.; Correia M.; Mota P.C.; Ramalho-Santos J.; The non-genomic effects of endocrine-disrupting chemicals on mammalian sperm. Reproduction 2016,151(1),R1-R13

Peretz J.; Vrooman L.; Ricke W.A.; Hunt P.A.; Ehrlich S.;

Corrales J.; Kristofco L.A.; Steele W.B.; Yates B.S.; Breed C.S.; Williams E.S.; Brooks B.W.; Global assessment of bisphenol a in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response. An Int J 2015,13,1-29

Vandenberg L.N.; Ehrlich S.; Belcher S.M.; Ben-Jonathan N.; Dolinoy D.C.; Hugo E.R.; Hunt P.A.; Newbold R.R.; Rubin B.S.; Saili K.S.; Soto A.M.; Wang H.S.; vom Saal F.S.; Low dose effects of Bisphenol A: An integrated review of in vitro, laboratory animal and epidemiology studies. Endocr Disrupt 2013,1

Le Magueresse-Battistoni B.; Multigner L.; Beausoleil C.; Rousselle C.; Effects of bisphenol A on metabolism and evidences of a mode of action mediated through endocrine disruption. Mol Cell Endocrinol 2018,475,74-91

Chianese R.; Troisi J.; Richards S.; Scafuro M.; Fasano S.; Guida M.; Pierantoni R.; Meccariello R.; Bisphenol A in reproduction: epigenetic effects. Curr Med Chem 2018,25(6),748-770

Nunez A.A.; Kannan K.; Giesy J.P.; Fang J.; Clemens L.G.; Effects of bisphenol A on energy balance and accumulation in brown adipose tissue in rats. Chemosphere 2001,42(8),917-922

Calafat A.M.; Ye X.; Wong L.Y.; Reidy J.A.; Needham L.L.; Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect 2008,116(1),39-44

Mercogliano R.; Santonicola S.; Investigation on bisphenol A levels in human milk and dairy supply chain: A review. Food Chem Toxicol 2018,114,98-107

Dualde P.; Pardo O.; Corpas-Burgos F.; Kuligowski J.; Gormaz M.; Vento M.; Pastor A.; Yusà V.; Biomonitoring of bisphenols A, F, S in human milk and probabilistic risk assessment for breastfed infants. Sci Total Environ 2019,668,797-805

Mørck T.J.; Sorda G.; Bechi N.; Rasmussen B.S.; Nielsen J.B.; Ietta F.; Rytting E.; Mathiesen L.; Paulesu L.; Knudsen L.E.; Placental transport and in vitro effects of Bisphenol A. Reprod Toxicol 2010,30(1),131-137

Corbel T.; Gayrard V.; Puel S.; Lacroix M.Z.; Berrebi A.; Gil S.; Viguié C.; Toutain P.L.; Picard-Hagen N.; Bidirectional placental transfer of Bisphenol A and its main metabolite, Bisphenol A-Glucuronide, in the isolated perfused human placenta. Reprod Toxicol 2014,47,51-58

Enzymes, Flavourings and Processing Aids (CEF). Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J EFSA Panel on Food Contact Materials2015,13(1),3978

EFSA A statement on the developmental immunotoxicity of bisphenol A (BPA): answer to the question from the Dutch Ministry of Health, Welfare and Sport. EFSA J 2016,14(10),4580

Rosenfeld C.S.; Neuroendocrine disruption in animal models due to exposure to bisphenol A analogues. Front Neuroendocrinol 2017,47,123-133

Andra S.S.; Charisiadis P.; Arora M.; van Vliet-Ostaptchouk J.V.; Makris K.C.; Biomonitoring of human exposures to chlorinated derivatives and structural analogs of bisphenol A. Environ Int 2015,85,352-379

Ullah A.; Pirzada M.; Jahan S.; Ullah H.; Shaheen G.; Rehman H.; Siddiqui M.F.; Butt M.A.; Bisphenol A and its analogs bisphenol B, bisphenol F, and bisphenol S: Comparative in vitro and in vivo studies on the sperms and testicular tissues of rats. Chemosphere 2018,209,508-516

Rochester J.R.; Bolden A.L.; Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ Health Perspect 2015,123(7),643-650

Chianese R.; Coccurello R.; Viggiano A.; Scafuro M.; Fiore M.; Coppola G.; Operto F.F.; Fasano S.; Layé S.; Pierantoni R.; Meccariello R.; Impact of dietary fats on brain functions. Curr Neuropharmacol 2018,16(7),1059-1085

Motti M.L.; D. Angelo S.; Meccariello R.; MicroRNAs, cancer and diet: Facts and new exciting perspectives. Curr Mol Pharmacol 2018,11(2),90-96

D’Angelo S.; Scafuro M.; Meccariello R.; BPA and nutraceuticals, simultaneous effects on endocrine functions. Endocr Metab Immune Disord Drug Targets Epub ahead of print2019,19(5),594-604

Rebuli M.E.; Patisaul H.B.; Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. J Steroid Biochem Mol Biol 2016,160,148-159

Mhaouty-Kodja S.; Belzunces L.P.; Canivenc M.C.; Schroeder H.; Chevrier C.; Pasquier E.; Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED. Mol Cell Endocrinol 2018,475,54-73

Murata M.; Kang J.H.; Bisphenol A.; Bisphenol A.; BPA) and cell signaling pathways. Biotechnol Adv 2018,36(1),311-327

Barouki R.; Melén E.; Herceg Z.; Beckers J.; Chen J.; Karagas M.; Puga A.; Xia Y.; Chadwick L.; Yan W.; Audouze K.; Slama R.; Heindel J.; Grandjean P.; Kawamoto T.; Nohara K.; Epigenetics as a mechanism linking developmental exposures to long-term toxicity. Environ Int 2018,114,77-86

Doshi T.; Mehta S.S.; Dighe V.; Balasinor N.; Vanage G.; Hypermethylation of estrogen receptor promoter region in adult testis of rats exposed neonatally to bisphenol A. Toxicology 2011,289(2-3),74-82

Dolinoy D.C.; The agouti mouse model: An epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 2008,66(Suppl. 1),S7-S11

Dolinoy D.C.; Huang D.; Jirtle R.L.; Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 2007,104(32),13056-13061

Yaoi T.; Itoh K.; Nakamura K.; Ogi H.; Fujiwara Y.; Fushiki S.; Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun 2008,376(3),563-567

Wolstenholme J.T.; Rissman E.F.; Connelly J.J.; The role of Bisphenol A in shaping the brain, epigenome and behavior. Horm Behav 2011,59(3),296-305

Kim J.H.; Sartor M.A.; Rozek L.S.; Faulk C.; Anderson O.S.; Jones T.R.; Nahar M.S.; Dolinoy D.C.; Perinatal bisphenol A exposure promotes dose-dependent alterations of the mouse methylome. BMC Genomics 2014,15,30

Tse L.A.; Lee P.M.Y.; Ho W.M.; Lam A.T.; Lee M.K.; Ng S.S.M.; He Y.; Leung K.S.; Hartle J.C.; Hu H.; Kan H.; Wang F.; Ng C.F.; Bisphenol A and other environmental risk factors for prostate cancer in Hong Kong. Environ Int 2017,107,1-7

Yin L.; Dai Y.; Jiang X.; Liu Y.; Chen H.; Han F.; Cao J.; Liu J.; Role of DNA methylation in bisphenol A exposed mouse spermatocyte. Environ Toxicol Pharmacol 2016,48,265-271

Zheng H.; Zhou X.; Li D.K.; Yang F.; Pan H.; Li T.; Miao M.; Li R.; Yuan W.; Genome-wide alteration in DNA hydroxymethylation in the sperm from bisphenol A-exposed men. PLoS One 2017,12(6)

Ferguson-Smith A.C.; Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 2011,12(8),565-575

Susiarjo M.; Sasson I.; Mesaros C.; Bartolomei M.S.; Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet 2013,9(4)

Drobná Z.; Henriksen A.D.; Wolstenholme J.T.; Montiel C.; Lambeth P.S.; Shang S.; Harris E.P.; Zhou C.; Flaws J.A.; Adli M.; Rissman E.F.; Transgenerational effects of bisphenol a on gene expression and DNA methylation of imprinted genes in brain. Endocrinology 2018,159(1),132-144

Eichenlaub-Ritter U.; Pacchierotti F.; Bisphenol A.; Bisphenol a effects on mammalian oogenesis and epigenetic integrity of oocytes: A case study exploring risks of endocrine disrupting chemicals. BioMed Res Int 2015

Doherty L.F.; Bromer J.G.; Zhou Y.; Aldad T.S.; Taylor H.S.; In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 2010,1(3),146-155

Viré E.; Brenner C.; Deplus R.; Blanchon L.; Fraga M.; Didelot C.; Morey L.; Van Eynde A.; Bernard D.; Vanderwinden J.M.; Bollen M.; Esteller M.; Di Croce L.; de Launoit Y.; Fuks F.; The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006,439(7078),871-874

Chen Z.; Zuo X.; He D.; Ding S.; Xu F.; Yang H.; Jin X.; Fan Y.; Ying L.; Tian C.; Ying C.; Long-term exposure to a 'safe' dose of bisphenol A reduced protein acetylation in adult rat testes Sci Rep 2017,9,7

Godlewski J.; Lenart J.; Salinska E.; MicroRNA in brain pathology: Neurodegeneration the other side of the brain cancer. Noncoding RNA 2019,5(1)

Shi C.; Zhang L.; Qin C.; Long non-coding RNAs in brain development, synaptic biology, and Alzheimer’s disease. Brain Res Bull 2017,132,160-169

Sekar S.; Liang W.S.; Circular RNA expression and function in the brain. Noncoding RNA Res 2019,4(1),23-29

Leighton L.J.; Bredy T.W.; Functional interplay between small non-coding RNAs and RNA modification in the brain. Noncoding RNA 2018,4(2)

Noack F.; Calegari F.; Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function. Front Neurosci 2018,12,85

Avissar-Whiting M.; Veiga K.R.; Uhl K.M.; Maccani M.A.; Gagne L.A.; Moen E.L.; Marsit C.J.; Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 2010,29(4),401-406

Derghal A.; Djelloul M.; Trouslard J.; Mounien L.; An emerging role of micro-RNA in the effect of the endocrine disruptors. Front Neurosci 2016,10,318

Gao G.Z.; Zhao Y.; Li H.X.; Li W.; Bisphenol A-elicited miR-146a-5p impairs murine testicular steroidogenesis through negative regulation of Mta3 signaling. Biochem Biophys Res Commun 2018,501(2),478-485

Cho H.; Kim S.J.; Park H.W.; Oh M.J.; Yu S.Y.; Lee S.Y.; Park C.; Han G.R.; Oh J.H.; Hwang S.Y.; Yoon S.J.; A relationship between miRNA and gene expression in the mouse Sertoli cell line after exposure to bisphenol A. Biochip J 2010,4,75-81

Kuruto-Niwa R.; Tateoka Y.; Usuki Y.; Nozawa R.; Measurement of bisphenol A concentrations in human colostrum. Chemosphere 2007,66(6),1160-1164

Guerrero-Bosagna C.; Savenkova M.; Haque M.M.; Nilsson E.; Skinner M.K.; Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility. PLoS One 2013,8(3)

Mendonca K.; Hauser R.; Calafat A.M.; Arbuckle T.E.; Duty S.M.; Bisphenol A concentrations in maternal breast milk and infant urine. Int Arch Occup Environ Health 2014,87(1),13-20

Dobrzyńska M.M.; Gajowik A.; Radzikowska J.; Tyrkiel E.J.; Jankowska-Steifer E.A.; Male-mediated F1 effects in mice exposed to bisphenol A, either alone or in combination with X-irradiation. Mutat Res Genet Toxicol Environ Mutagen 2015,789-790,36-45

Marczylo E.L.; Amoako A.A.; Konje J.C.; Gant T.W.; Marczylo T.H.; Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 2012,7(5),432-439

Mielke H.; Partosch F.; Gundert-Remy U.; The contribution of dermal exposure to the internal exposure of bisphenol A in man. Toxicol Lett 2011,204(2-3),190-198

Marquet F.; Payan J.P.; Beydon D.; Wathier L.; Grandclaude M.C.; Ferrari E.; In vivo and ex vivo percutaneous absorption of [14C]-bisphenol A in rats: a possible extrapolation to human absorption? Arch Toxicol 2011,85(9),1035-1043

Nishikawa M.; Iwano H.; Yanagisawa R.; Koike N.; Inoue H.; Yokota H.; Placental transfer of conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ Health Perspect 2010,118(9),1196-1203

Schönfelder G.; Wittfoht W.; Hopp H.; Talsness C.E.; Paul M.; Chahoud I.; Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect 2002,110(11),A703-A707

Takahashi O.; Oishi S.; Disposition of orally administered 2,2-Bis(4-hydroxyphenyl)propane (Bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ Health Perspect 2000,108(10),931-935

Teeguarden J.G.; Twaddle N.C.; Churchwell M.I.; Doerge D.R.; Urine and serum biomonitoring of exposure to environmental estrogens I: Bisphenol A in pregnant women. Food Chem Toxicol 2016,92,129-142

Grandin F.C.; Lacroix M.Z.; Gayrard V.; Viguié C.; Mila H.; de Place A.; Vayssière C.; Morin M.; Corbett J.; Gayrard C.; Gely C.A.; Toutain P.L.; Picard-Hagen N.; Is bisphenol S a safer alternative to bisphenol A in terms of potential fetal exposure? Placental transfer across the perfused human placenta. Chemosphere 2019,221,471-478

Roen E.L.; Wang Y.; Calafat A.M.; Wang S.; Margolis A.; Herbstman J.; Hoepner L.A.; Rauh V.; Perera F.P.; Bisphenol A exposure and behavioral problems among inner city children at 7-9 years of age. Environ Res 2015,142,739-745

Kundakovic M.; Gudsnuk K.; Franks B.; Madrid J.; Miller R.L.; Perera F.P.; Champagne F.A.; Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci USA 2013,110(24),9956-9961

McCaffrey K.A.; Jones B.; Mabrey N.; Weiss B.; Swan S.H.; Patisaul H.B.; Sex specific impact of perinatal bisphenol A (BPA) exposure over a range of orally administered doses on rat hypothalamic sexual differentiation. Neurotoxicology 2013,36(36),55-62

Kohwi M.; Doe C.Q.; Temporal fate specification and neural progenitor competence during development. Nat Rev Neurosci 2013,14(12),823-838

Ohtsuka T.; Kageyama R.; Regulation of temporal properties of neural stem cells and transition timing of neurogenesis and gliogenesis during mammalian neocortical development. Semin Cell Dev Biol pii: S1084-95212019(18),30062-4

Kempermann G.; Jessberger S.; Steiner B.; Kronenberg G.; Milestones of neuronal development in the adult hippocampus. Trends Neurosci 2004,27(8),447-452

Kee N.; Teixeira C.M.; Wang A.H.; Frankland P.W.; Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci 2007,10(3),355-362

Zhao C.; Deng W.; Gage F.H.; Mechanisms and functional implications of adult neurogenesis. Cell 2008,132(4),645-660

Stuchlik A.; Dynamic learning and memory, synaptic plasticity and neurogenesis: an update. Front Behav Neurosci 2014,8,106

Cassé F.; Richetin K.; Toni N.; Astrocytes' contribution to adult neurogenesis in physiology and alzheimer's disease. Front. Cell Neurosci 2018,12(432)

Negri-Cesi P.; Bisphenol A.; Bisphenol a interaction with brain development and functions. Dose Response 2015,13(2)

Tiwari S.K.; Agarwal S.; Seth B.; Yadav A.; Ray R.S.; Mishra V.N.; Chaturvedi R.K.; Inhibitory effects of bisphenol-a on neural stem cells proliferation and differentiation in the rat brain are dependent on Wnt/β-Catenin pathway. Mol Neurobiol 2015,52(3),1735-1757

Kim K.; Son T.G.; Kim S.J.; Kim H.S.; Kim T.S.; Han S.Y.; Lee J.; Suppressive effects of bisphenol A on the proliferation of neural progenitor cells. J Toxicol Environ Health A 2007,70(15-16),1288-1295

Kim K.; Son T.G.; Park H.R.; Kim S.J.; Kim H.S.; Kim H.S.; Kim T.S.; Jung K.K.; Han S.Y.; Lee J.; Potencies of bisphenol A on the neuronal differentiation and hippocampal neurogenesis. J Toxicol Environ Health A 2009,72(21-22),1343-1351

Agarwal S.; Tiwari S.K.; Seth B.; Yadav A.; Singh A.; Mudawal A.; Chauhan L.K.; Gupta S.K.; Choubey V.; Tripathi A.; Kumar A.; Ray R.S.; Shukla S.; Parmar D.; Chaturvedi R.K.; Activation of autophagic flux against xenoestrogen Bisphenol-A-induced hippocampal neurodegeneration via AMP kinase (AMPK)/mammalian target of Rapamycin (mTOR) pathways. J Biol Chem 2015,290(34),21163-21184

Zhao Y.G.; Zhang H.; The incredible ULKs: Autophagy and beyond. Mol Cell 2016,62(4),475-476

Li Z.; Zhao K.; Lv X.; Lan Y.; Hu S.; Shi J.; Guan J.; Yang Y.; Lu H.; He H.; Gao F.; He W.; Ulk1 governs nerve growth factor/trka signaling by mediating Rab5 GTPase activation in porcine hemagglutinating encephalomyelitis virus-induced neurodegenerative disorders. J Virol 2018,92(16),e00325-e18

Agarwal S.; Yadav A.; Tiwari S.K.; Seth B.; Chauhan L.K.; Khare P.; Ray R.S.; Chaturvedi R.K.; Dynamin-related Protein 1 inhibition mitigates Bisphenol A-mediated alterations in mitochondrial dynamics and neural stem cell proliferation and differentiation. J Biol Chem 2016,291(31),15923-15939

Jang Y.J.; Park H.R.; Kim T.H.; Yang W.J.; Lee J.J.; Choi S.Y.; Oh S.B.; Lee E.; Park J.H.; Kim H.P.; Kim H.S.; Lee J.; High dose bisphenol A impairs hippocampal neurogenesis in female mice across generations. Toxicology 2012,296(1-3),73-82

Kumar D.; Thakur M.K.; Effect of perinatal exposure to Bisphenol-A on DNA methylation and histone acetylation in cerebral cortex and hippocampus of postnatal male mice. J Toxicol Sci 2017,42(3),281-289

Feng J.; Zhou Y.; Campbell S.L.; Le T.; Li E.; Sweatt J.D.; Silva A.J.; Fan G.; Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 2010,13(4),423-430

Campbell R.R.; Wood M.A.; How the epigenome integrates information and reshapes the synapse. Nat Rev Neurosci 2019,20(3),133-147

Keverne E.B.; Significance of epigenetics for understanding brain development, brain evolution and behaviour. Neuroscience 2014,264,207-217

Bale T.L.; Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 2015,16(6),332-344

Cheong A.; Johnson S.A.; Howald E.C.; Ellersieck M.R.; Camacho L.; Lewis S.M.; Vanlandingham M.M.; Ying J.; Ho S.M.; Rosenfeld C.S.; Gene expression and DNA methylation changes in the hypothalamus and hippocampus of adult rats developmentally exposed to bisphenol A or ethinyl estradiol: a CLARITY-BPA consortium study. Epigenetics 2018,13(7),704-720

Kitraki E.; Nalvarte I.; Alavian-Ghavanini A.; Rüegg J.; Developmental exposure to bisphenol A alters expression and DNA methylation of Fkbp5, an important regulator of the stress response. Mol Cell Endocrinol 2015,417,191-199

Alavian-Ghavanini A.; Lin P.I.; Lind P.M.; Risén Rimfors S.; Halin Lejonklou M.; Dunder L.; Tang M.; Lindh C.; Bornehag C.G.; Rüegg J.; Prenatal bisphenol a exposure is linked to epigenetic changes in glutamate receptor subunit gene Grin2b in female rats and humans. Sci Rep 2018,8(1),11315

Paoletti P.; Bellone C.; Zhou Q.; NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 2013,14(6),383-400

Aiba T.; Saito T.; Hayashi A.; Sato S.; Yunokawa H.; Maruyama T.; Fujibuchi W.; Ohsako S.; Does the prenatal bisphenol A exposure alter DNA methylation levels in the mouse hippocampus? An analysis using a high-sensitivity methylome technique. Genes Environ 2018,40,12

Hajszan T.; Leranth C.; Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 2010,31(4),519-530

MacLusky N.J.; Hajszan T.; Leranth C.; The environmental estrogen bisphenol a inhibits estradiol-induced hippocampal synaptogenesis. Environ Health Perspect 2005,113(6),675-679

Leranth C.; Petnehazy O.; MacLusky N.J.; Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. J Neurosci 2003,23(5),1588-1592

Leranth C.; Hajszan T.; Szigeti-Buck K.; Bober J.; MacLusky N.J.; Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci USA 2008,105(37),14187-14191

Santoro A.; Spinelli C.C.; Martucciello S.; Nori S.L.; Capunzo M.; Puca A.A.; Ciaglia E.; Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J Leukoc Biol 2018,103(3),509-524

Allen N.J.; Lyons D.A.; Glia as architects of central nervous system formation and function. Science 2018,362(6411),181-185

Ramon-Cañellas P.; Peterson H.P.; Morante J.; From early to late neurogenesis: neural progenitors and the glial niche from a fly’s point of view. Neuroscience 2019,399,39-52

Schwarz J.M.; Sholar P.W.; Bilbo S.D.; Sex differences in microglial colonization of the developing rat brain. J Neurochem 2012,120(6),948-963

Williamson L.L.; Sholar P.W.; Mistry R.S.; Smith S.H.; Bilbo S.D.; Microglia and memory: modulation by early-life infection. J Neurosci 2011,31(43),15511-15521

Rosin J.M.; Kurrasch D.M.; Bisphenol A and microglia: could microglia be responsive to this environmental contaminant during neural development? Am J Physiol Endocrinol Metab 2018,315(2),E279-E285

Sadowski R.N.; Wise L.M.; Park P.Y.; Schantz S.L.; Juraska J.M.; Early exposure to bisphenol A alters neuron and glia number in the rat prefrontal cortex of adult males, but not females. Neuroscience 2014,279,122-131

Wise L.M.; Sadowski R.N.; Kim T.; Willing J.; Juraska J.M.; Long-term effects of adolescent exposure to bisphenol A on neuron and glia number in the rat prefrontal cortex: Differences between the sexes and cell type. Neurotoxicology 2016,53,186-192

Takahashi M.; Komada M.; Miyazawa K.; Goto S.; Ikeda Y.; Bisphenol A exposure induces increased microglia and microglial related factors in the murine embryonic dorsal telencephalon and hypothalamus. Toxicol Lett 2018,284,113-119

Luo G.; Wang S.; Li Z.; Wei R.; Zhang L.; Liu H.; Wang C.; Niu R.; Wang J.; Maternal bisphenol a diet induces anxiety-like behavior in female juvenile with neuroimmune activation. Toxicol Sci 2014,140(2),364-373

Zhu J.; Jiang L.; Liu Y.; Qian W.; Liu J.; Zhou J.; Gao R.; Xiao H.; Wang J.; MAPK and NF-κB pathways are involved in bisphenol A-induced TNF-α and IL-6 production in BV2 microglial cells. Inflammation 2015,38(2),637-648

Bilbo S.D.; Frank A.; Frank A.; Beach award: programming of neuroendocrine function by early-life experience: a critical role for the immune system. Horm Behav 2013,63(5),684-691

Patisaul H.B.; Sullivan A.W.; Radford M.E.; Walker D.M.; Adewale H.B.; Winnik B.; Coughlin J.L.; Buckley B.; Gore A.C.; Anxiogenic effects of developmental bisphenol A exposure are associated with gene expression changes in the juvenile rat amygdala and mitigated by soy. PLoS One 2012,7(9)

Rebuli M.E.; Gibson P.; Rhodes C.L.; Cushing B.S.; Patisaul H.B.; Sex differences in microglial colonization and vulnerabilities to endocrine disruption in the social brain. Gen Comp Endocrinol 2016,238,39-46

Xu X.B.; Fan S.J.; He Y.; Ke X.; Song C.; Xiao Y.; Zhang W.H.; Zhang J.Y.; Yin X.P.; Kato N.; Pan B.X.; Loss of hippocampal oligodendrocytes contributes to the deficit of contextual fear learning in adult rats experiencing early bisphenol A exposure. Mol Neurobiol 2017,54(6),4524-4536

Hu F.; Li T.; Gong H.; Chen Z.; Jin Y.; Xu G.; Wang M.; Bisphenol A impairs synaptic plasticity by both pre- and postsynaptic mechanisms. Adv Sci (Weinh) 2017,4(8)

Ishido M.; Yonemoto J.; Morita M.; Mesencephalic neurodegeneration in the orally administered bisphenol A-caused hyperactive rats. Toxicol Lett 2007,173(1),66-72

Chen Z.; Li T.; Zhang L.; Wang H.; Hu F.; Bisphenol A exposure remodels cognition of male rats attributable to excitatory alterations in the hippocampus and visual cortex. Toxicology 2018,410,132-141

Zhou Y.; Wang Z.; Xia M.; Zhuang S.; Gong X.; Pan J.; Li C.; Fan R.; Pang Q.; Lu S.; Neurotoxicity of low bisphenol A (BPA) exposure for young male mice: Implications for children exposed to environmental levels of BPA. Environ Pollut 2017,229,40-48

Eilam-Stock T.; Serrano P.; Frankfurt M.; Luine V.; Bisphenol-A impairs memory and reduces dendritic spine density in adult male rats. Behav Neurosci 2012,126(1),175-185

Kuwahara R.; Kawaguchi S.; Kohara Y.; Cui H.; Yamashita K.; Perinatal exposure to low-dose bisphenol A impairs spatial learning and memory in male rats. J Pharmacol Sci 2013,123(2),132-139

Diaz Weinstein S.; Villafane J.J.; Juliano N.; Bowman R.E.; Adolescent exposure to Bisphenol-A increases anxiety and sucrose preference but impairs spatial memory in rats independent of sex. Brain Res 2013,1529,56-65

Xu X.H.; Wang Y.M.; Zhang J.; Luo Q.Q.; Ye Y.P.; Ruan Q.; Perinatal exposure to bisphenol-A changes N-methyl-D-aspartate receptor expression in the hippocampus of male rat offspring. Environ Toxicol Chem 2010,29(1),176-181

Kubo K.; Arai O.; Ogata R.; Omura M.; Hori T.; Aou S.; Exposure to bisphenol A during the fetal and suckling periods disrupts sexual differentiation of the locus coeruleus and of behavior in the rat. Neurosci Lett 2001,304(1-2),73-76

Kubo K.; Arai O.; Omura M.; Watanabe R.; Ogata R.; Aou S.; Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neurosci Res 2003,45(3),345-356

Elsworth J.D.; Jentsch J.D.; Groman S.M.; Roth R.H.; Redmond E.D.; Leranth C.; Low circulating levels of bisphenol-A induce cognitive deficits and loss of asymmetric spine synapses in dorsolateral prefrontal cortex and hippocampus of adult male monkeys. J Comp Neurol 2015,523(8),1248-1257

Braun J.M.; Yolton K.; Dietrich K.N.; Hornung R.; Ye X.; Calafat A.M.; Lanphear B.P.; Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect 2009,117(12),1945-1952

Braun J.M.; Kalkbrenner A.E.; Calafat A.M.; Yolton K.; Ye X.; Dietrich K.N.; Lanphear B.P.; Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics 2011,128(5),873-882

Perera F.; Vishnevetsky J.; Herbstman J.B.; Calafat A.M.; Xiong W.; Rauh V.; Wang S.; Prenatal bisphenol a exposure and child behavior in an inner-city cohort. Environ Health Perspect 2012,120(8),1190-1194

Lim Y.H.; Bae S.; Kim B.N.; Shin C.H.; Lee Y.A.; Kim J.I.; Hong Y.C.; Prenatal and postnatal bisphenol A exposure and social impairment in 4-year-old children. Environ Health 2017,16(1),79

Miodovnik A.; Engel S.M.; Zhu C.; Ye X.; Soorya L.V.; Silva M.J.; Calafat A.M.; Wolff M.S.; Endocrine disruptors and childhood social impairment. Neurotoxicology 2011,32(2),261-267

Carter C.J.; Blizard R.A.; Autism genes are selectively targeted by environmental pollutants including pesticides, heavy metals, bisphenol A, phthalates and many others in food, cosmetics or household products. Neurochem Int 2016,101,83-109

Thongkorn S.; Kanlayaprasit S.; Jindatip D.; Tencomnao T.; Hu V.W.; Sarachana T.; Sex differences in the effects of prenatal bisphenol A exposure on genes associated with autism spectrum disorder in the hippocampus. Sci Rep 2019,9(1),3038

Harley K.G.; Gunier R.B.; Kogut K.; Johnson C.; Bradman A.; Calafat A.M.; Eskenazi B.; Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ Res 2013,126,43-50

Ghassabian A.; Bell E.M.; Ma W.L.; Sundaram R.; Kannan K.; Buck Louis G.M.; Yeung E.; Concentrations of perfluoroalkyl substances and bisphenol A in newborn dried blood spots and the association with child behavior. Environ Pollut 2018,243(Pt B),1629-1636

Matsushima A.; Liu X.; Okada H.; Shimohigashi M.; Shimohigashi Y.; Bisphenol AF is a full agonist for the estrogen receptor ERalpha but a highly specific antagonist for ERbeta. Environ Health Perspect 2010,118(9),1267-1272

Li Y.; Burns K.A.; Arao Y.; Luh C.J.; Korach K.S.; Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor α and β in vitro. Environ Health Perspect 2012,120(7),1029-1035

Molina-Molina J.M.; Amaya E.; Grimaldi M.; Sáenz J.M.; Real M.; Fernández M.F.; Balaguer P.; Olea N.; In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol Appl Pharmacol 2013,272(1),127-136

Danzl E.; Sei K.; Soda S.; Ike M.; Fujita M.; Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. Int J Environ Res Public Health 2009,6(4),1472-1484

Liao C.; Liu F.; Kannan K.; Bisphenol s, a new bisphenol analogue, in paper products and currency bills and its association with bisphenol a residues. Environ Sci Technol 2012,46(12),6515-6522

Inadera H.; Neurological Effects of Bisphenol A and its Analogues. Int J Med Sci 2015,12(12),926-936

Kim B.; Colon E.; Chawla S.; Vandenberg L.N.; Suvorov A.; Endocrine disruptors alter social behaviors and indirectly influence social hierarchies via changes in body weight. Environ Health 2015,14,64

Ohtani N.; Iwano H.; Suda K.; Tsuji E.; Tanemura K.; Inoue H.; Yokota H.; Adverse effects of maternal exposure to bisphenol F on the anxiety- and depression-like behavior of offspring. J Vet Med Sci 2017,79(2),432-439

Catanese M.C.; Vandenberg L.N.; Bisphenol S.; BPS) alters maternal behavior and brain in mice exposed during pregnancy/lactation and their daughters. Endocrinology 2017,158(3),516-530

Castro B.; Sánchez P.; Torres J.M.; Ortega E.; Bisphenol A, bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats. Environ Res 2015,142,281-287

Lee S.; Kim Y.K.; Shin T.Y.; Kim S.H.; Neurotoxic effects of bisphenol AF on calcium-induced ROS and MAPKs. Neurotox Res 2013,23(3),249-259

Pierantoni R.; Cobellis G.; Meccariello R.; Fasano S.; Evolutionary aspects of cellular communication in the vertebrate hypothalamo-hypophysio-gonadal axis. Int Rev Cytol 2002,218,69-141

Pierantoni R.; Cobellis G.; Meccariello R.; Cacciola G.; Chianese R.; Chioccarelli T.; Fasano S.; CB1 activity in male reproduction: mammalian and nonmammalian animal models. Vitam Horm 2009,81,367-387

Pierantoni R.; Cobellis G.; Meccariello R.; Cacciola G.; Chianese R.; Chioccarelli T.; Fasano S.; Testicular gonadotropin-releasing hormone activity, progression of spermatogenesis, and sperm transport in vertebrates. Ann N Y Acad Sci 2009,1163,279-291

Cacciola G.; Chianese R.; Chioccarelli T.; Ciaramella V.; Fasano S.; Pierantoni R.; Meccariello R.; Cobellis G.; Cannabinoids and reproduction: A lasting and intriguing history. Pharmac 2010,3,3275-3323

Chianese R.; Chioccarelli T.; Cacciola G.; Ciaramella V.; Fasano S.; Pierantoni R.; Meccariello R.; Cobellis G.; The contribution of lower vertebrate animal models in human reproduction research. Gen Comp Endocrinol 2011,171(1),17-27

Meccariello R.; Chianese R.; Chioccarelli T.; Ciaramella V.; Fasano S.; Pierantoni R.; Cobellis G.; Intra-testicular signals regulate germ cell progression and production of qualitatively mature spermatozoa in vertebrates. Front Endocrinol (Lausanne) 2014,5,69

Chianese R.; Cobellis G.; Chioccarelli T.; Ciaramella V.; Migliaccio M.; Fasano S.; Pierantoni R.; Meccariello R.; Kisspeptins, estrogens and male fertility. Curr Med Chem 2016,23(36),4070-4091

Cobellis G.; Meccariello R.; Chianese R.; Chioccarelli T.; Fasano S.; Pierantoni R.; Effects of neuroendocrine CB1 activity on adult Leydig cells. Front Endocrinol (Lausanne) 2016,7,47

Chianese R.; Colledge W.H.; Fasano S.; Meccariello R.; Editorial: The Multiple Facets of Kisspeptin Activity in Biological Systems. Front Endocrinol (Lausanne) 2018,9,727

Meccariello R.; Fasano S.; Pierantoni R.; Cobellis G.; Modulators of hypothalamic-pituitary-gonadal axis for the control of spermatogenesis and sperm quality in vertebrates. Front Endocrinol (Lausanne) 2014,5,135

Ciaramella V.; Chianese R.; Pariante P.; Fasano S.; Pierantoni R.; Meccariello R.; Expression analysis of gnrh1 and gnrhr1 in spermatogenic cells of rat. Int J Endocrinol 2015,2015

Cobellis G.; Meccariello R.; Pierantoni R.; Fasano S.; Intratesticular signals for progression of germ cell stages in vertebrates. Gen Comp Endocrinol 2003,134(3),220-228

Chianese R.; Ciaramella V.; Fasano S.; Pierantoni R.; Meccariello R.; Kisspeptin regulates steroidogenesis and spermiation in anuran amphibian. Reproduction 2017,154(4),403-414

Chianese R.; Ciaramella V.; Fasano S.; Pierantoni R.; Meccariello R.; Kisspeptin drives germ cell progression in the anuran amphibian Pelophylax esculentus: a study carried out in ex vivo testes. Gen Comp Endocrinol 2015,211,81-91

Huo X.; Chen D.; He Y.; Zhu W.; Zhou W.; Zhang J.; Bisphenol-A and Female Infertility: A Possible Role of Gene-Environment Interactions. Int J Environ Res Public Health 2015,12(9),11101-11116

Cariati F.; D’Uonno N.; Borrillo F.; Iervolino S.; Galdiero G.; Tomaiuolo R.; Bisphenol a: an emerging threat to male fertility. Reprod Biol Endocrinol 2019,17(1),6

Franssen D.; Gérard A.; Hennuy B.; Donneau A.F.; Bourguignon J.P.; Parent A.S.; Delayed neuroendocrine sexual maturation in female rats after a very low dose of bisphenol a through altered GABAergic neurotransmission and opposing effects of a high dose. Endocrinology 2016,157(5),1740-1750

Oliveira I.M.; Romano R.M.; de Campos P.; Cavallin M.D.; Oliveira C.A.; Romano M.A.; Delayed onset of puberty in male offspring from bisphenol A-treated dams is followed by the modulation of gene expression in the hypothalamic-pituitary-testis axis in adulthood. Reprod Fertil Dev 2017,29(12),2496-2505

de Roux N.; Genin E.; Carel J.C.; Matsuda F.; Chaussain J.L.; Milgrom E.; Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA 2003,100(19),10972-10976, 10972, 10976.

Seminara S.B.; Messager S.; Chatzidaki E.E.; Thresher R.R.; Acierno J.S.; Shagoury J.K.; Bo-Abbas Y.; Kuohung W.; Schwinof K.M.; Hendrick A.G.; Zahn D.; Dixon J.; Kaiser U.B.; Slaugenhaupt S.A.; Gusella J.F.; O’Rahilly S.; Carlton M.B.; Crowley W.F.; Aparicio S.A.; Colledge W.H.; The GPR54 gene as a regulator of puberty. N Engl J Med 2003,349(17),1614-1627

Pinilla L.; Aguilar E.; Dieguez C.; Millar R.P.; Tena-Sempere M.; Kisspeptins and reproduction: Physiological roles and regulatory mechanisms. Physiol Rev 2012,92(3),1235-1316

Patisaul H.B.; Todd K.L.; Mickens J.A.; Adewale H.B.; Impact of neonatal exposure to the ERalpha agonist PPT, bisphenol-A or phytoestrogens on hypothalamic kisspeptin fiber density in male and female rats. Neurotoxicology 2009,30(3),350-357

Cao J.; Mickens J.A.; McCaffrey K.A.; Leyrer S.M.; Patisaul H.B.; Neonatal bisphenol a exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus. Neurotoxicology 2012,33(1),23-36

Arambula S.E.; Fuchs J.; Cao J.; Patisaul H.B.; Effects of perinatal bisphenol A exposure on the volume of sexually-dimorphic nuclei of juvenile rats: A CLARITY-BPA consortium study. Neurotoxicology 2017,63,33-42

Arambula S.E.; Belcher S.M.; Planchart A.; Turner S.D.; Patisaul H.B.; Impact of low dose oral exposure to bisphenol a (BPA) on the neonatal rat hypothalamic and hippocampal transcriptome: A CLARITY-BPA consortium study. Endocrinology 2016,157(10),3856-3872

Kurian J.R.; Keen K.L.; Kenealy B.P.; Garcia J.P.; Hedman C.J.; Terasawa E.; Acute influences of bisphenol a exposure on hypothalamic release of gonadotropin-releasing hormone and kisspeptin in female rhesus monkeys. Endocrinology 2015,156(7),2563-2570

Klenke U.; Constantin S.; Wray S.; BPA directly decreases GnRH neuronal activity via noncanonical pathway. Endocrinology 2016,157(5),1980-1990

McIlwraith E.K.; Loganathan N.; Belsham D.D.; Phoenixin expression is regulated by the fatty acids palmitate, docosahexaenoic acid and oleate, and the endocrine disrupting chemical bisphenol a in immortalized hypothalamic neurons. Front Neurosci 2018,12,838

McIlwraith E.K.; Loganathan N.; Belsham DD.; Regulation of Gpr173 expression, a putative phoenixin receptor, by saturated fatty acid palmitate and endocrine-disrupting chemical bisphenol A through a p38-mediated mechanism in immortalized hypothalamic neurons. Mol Cell Endocrinol pii: S0303-72072019(19),30038-3

Legeay S.; Faure S.; Is bisphenol A an environmental obesogen? Food Chem Toxicol 2018,114,98-107

Errico S.; Portaccio M.; Nicolucci C.; Meccariello R.; Chianese R.; Scafuro M.; Lepore M.; Diano N.; A novel experimental approach for liver analysis in rats exposed to Bisphenol A by means of LC-mass spectrometry and infrared spectroscopy. J Pharm Biomed Anal 2019,165,207-212

Shu L.; Meng Q.; Diamante G.; Tsai B.; Chen Y.W.; Mikhail A.; Luk H.; Ritz B.; Allard P.; Yang X.; Prenatal bisphenol a exposure in mice induces multitissue multiomics disruptions linking to cardiometabolic disorders. Endocrinology 2019,160(2),409-429

Friedman J.M.; Halaas J.L.; Leptin and the regulation of body weight in mammals. Nature 1998,395(6704),763-770

Smith J.T.; Acohido B.V.; Clifton D.K.; Steiner R.A.; KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol 2006,18(4),298-303

Castellano J.M.; Navarro V.M.; Fernández-Fernández R.; Nogueiras R.; Tovar S.; Roa J.; Vazquez M.J.; Vigo E.; Casanueva F.F.; Aguilar E.; Pinilla L.; Dieguez C.; Tena-Sempere M.; Changes in hypothalamic KiSS-1 system and restoration of pubertal activation of the reproductive axis by kisspeptin in undernutrition. Endocrinology 2005,146(9),3917-3925

Castellano J.M.; Navarro V.M.; Roa J.; Pineda R.; Sánchez-Garrido M.A.; García-Galiano D.; Vigo E.; Dieguez C.; Aguilar E.; Pinilla L.; Tena-Sempere M.; Alterations in hypothalamic KiSS-1 system in experimental diabetes: early changes and functional consequences. Endocrinology 2009,150(2),784-794

Dudek M.; Kołodziejski P.A.; Pruszyńska-Oszmałek E.; Sassek M.; Ziarniak K.; Nowak K.W.; Sliwowska J.H.; Effects of high-fat diet-induced obesity and diabetes on Kiss1 and GPR54 expression in the hypothalamic-pituitary-gonadal (HPG) axis and peripheral organs (fat, pancreas and liver) in male rats. Neuropeptides 2016,56,41-49

Roepke T.A.; Yang J.A.; Yasrebi A.; Mamounis K.J.; Oruc E.; Zama A.M.; Uzumcu M.; Regulation of arcuate genes by developmental exposures to endocrine-disrupting compounds in female rats. Reprod Toxicol 2016,62,18-26

Desai M.; Ferrini M.G.; Han G.; Jellyman J.K.; Ross M.G.; In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. Environ Res 2018,164,45-52

Cornejo M.P.; Hentges S.T.; Maliqueo M.; Coirini H.; Becu-Villalobos D.; Elias C.F.; Neuroendocrine Regulation of Metabolism. J Neuroendocrinol 2016,28(7),12395

Wilson J.L.; Enriori P.J.; A talk between fat tissue, gut, pancreas and brain to control body weight. Mol Cell Endocrinol 2015,418(Pt 2),108-119

Salehi A.; Loganathan N.; Belsham D.D.; Bisphenol A induces Pomc gene expression through neuroinflammatory and PPARγ nuclear receptor-mediated mechanisms in POMC-expressing hypothalamic neuronal models. Mol Cell Endocrinol 2019,479,12-19

MacKay H.; Patterson Z.R.; Abizaid A.; Perinatal Exposure to low-dose bisphenol-a disrupts the structural and functional development of the hypothalamic feeding circuitry. Endocrinology 2017,158(4),768-777

Rezg R.; Abot A.; Mornagui B.; Aydi S.; Knauf C.; Effects of Bisphenol S on hypothalamic neuropeptides regulating feeding behavior and apelin/APJ system in mice. Ecotoxicol Environ Saf 2018,161,459-466

Pagotto U.; Marsicano G.; Cota D.; Lutz B.; Pasquali R.; The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 2006,27(1),73-100

Battista N.; Meccariello R.; Cobellis G.; Fasano S.; Di Tommaso M.; Pirazzi V.; Konje J.C.; Pierantoni R.; Maccarrone M.; The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. Mol Cell Endocrinol 2012,355(1),1-14

Meccariello R.; Battista N.; Bradshaw H.B.; Wang H.; Updates in reproduction coming from the endocannabinoid system. Int J Endocrinol 2014,2014

Bovolin P.; Cottone E.; Pomatto V.; Fasano S.; Pierantoni R.; Cobellis G.; Meccariello R.; Endocannabinoids are involved in male vertebrate reproduction: regulatory mechanisms at central and gonadal level. Front Endocrinol (Lausanne) 2014,5,54

Meccariello R.; Franzoni M.F.; Chianese R.; Cottone E.; Scarpa D.; Donna D.; Cobellis G.; Guastalla A.; Pierantoni R.; Fasano S.; Interplay between the endocannabinoid system and GnRH-I in the forebrain of the anuran amphibian Rana esculenta. Endocrinology 2008,149(5),2149-2158

Chianese R.; Cobellis G.; Pierantoni R.; Fasano S.; Meccariello R.; Non-mammalian vertebrate models and the endocannabinoid system: relationships with gonadotropin-releasing hormone. Mol Cell Endocrinol 2008,286(1-2)(Suppl. 1),S46-S51

Ciaramella V.; Meccariello R.; Chioccarelli T.; Sirleto M.; Fasano S.; Pierantoni R.; Chianese R.; Anandamide acts via kisspeptin in the regulation of testicular activity of the frog, Pelophylax esculentus. Mol Cell Endocrinol 2016,420,75-84

Osei-Hyiaman D.; Depetrillo M.; Harvey-White J.; Bannon A.W.; Cravatt B.F.; Kuhar M.J.; Mackie K.; Palkovits M.; Kunos G.; Cocaine- and amphetamine-related transcript is involved in the orexigenic effect of endogenous anandamide. Neuroendocrinology 2005,81(4),273-282

Suglia A.; Chianese R.; Migliaccio M.; Ambrosino C.; Fasano S.; Pierantoni R.; Cobellis G.; Chioccarelli T.; Bisphenol A induces hypothalamic down-regulation of the the cannabinoid receptor 1 and anorexigenic effects in male mice. Pharmacol Res 2016,113(Pt A),376-383

Loganathan N.; Salehi A.; Chalmers J.A.; Belsham D.D.; Bisphenol A.; Bisphenol a alters bmal1, Per2, and Rev-Erba mRNA and requires bmal1 to increase neuropeptide Y expression in hypothalamic neurons. Endocrinology 2019,160(1),181-192

Chen W.; Lau S.W.; Fan Y.; Wu R.S.S.; Ge W.; Juvenile exposure to bisphenol A promotes ovarian differentiation but suppresses its growth - Potential involvement of pituitary follicle-stimulating hormone. Aquat Toxicol 2017,193,111-121

Maffini M.V.; Rubin B.S.; Sonnenschein C.; Soto A.M.; Endocrine disruptors and reproductive health: The case of bisphenol-A. Mol Cell Endocrinol 2006,254-255,179-186

Zhang H-Q.; Zhang X-F.; Zhang L-J.; Chao H-H.; Pan B.; Feng Y-M.; Li L.; Sun X.F.; Shen W.; Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Mol Biol Rep 2012,39(5),5651-5657

Susiarjo M.; Hassold T.J.; Freeman E.; Hunt P.A.; Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet 2007,3(1)

Hunt P.A.; Lawson C.; Gieske M.; Murdoch B.; Smith H.; Marre A.; Hassold T.; VandeVoort C.A.; Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc Natl Acad Sci USA 2012,109(43),17525-17530

Karavan J.R.; Pepling M.E.; Effects of estrogenic compounds on neonatal oocyte development. Reprod Toxicol 2012,34(1),51-56

Rodríguez H.A.; Santambrosio N.; Santamaría C.G.; Muñoz-de-Toro M.; Luque E.H.; Neonatal exposure to bisphenol A reduces the pool of primordial follicles in the rat ovary. Reprod Toxicol 2010,30(4),550-557

Chao H-H.; Zhang X-F.; Chen B.; Pan B.; Zhang L-J.; Li L.; Sun X-F.; Shi Q-H.; Shen W.; Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Histochem Cell Biol 2012,137(2),249-259

Laing L.V.; Viana J.; Dempster E.L.; Trznadel M.; Trunkfield L.A.; Uren Webster T.M.; van Aerle R.; Paull G.C.; Wilson R.J.; Mill J.; Santos E.M.; Bisphenol A causes reproductive toxicity, decreases dnmt1 transcription, and reduces global DNA methylation in breeding zebrafish (Danio rerio). Epigenetics 2016,11(7),526-538

Liu Y.; Yuan C.; Chen S.; Zheng Y.; Zhang Y.; Gao J.; Wang Z.; Global and cyp19a1a gene specific DNA methylation in gonads of adult rare minnow Gobiocypris rarus under bisphenol A exposure. Aquat Toxicol 2014,156,10-16

Santangeli S.; Maradonna F.; Gioacchini G.; Cobellis G.; Piccinetti C.C.; Dalla Valle L.; Carnevali O.; BPA-induced deregulation of epigenetic patterns: Effects on female zebrafish reproduction. Sci Rep 2016,6,21982

Kandaraki E.; Chatzigeorgiou A.; Livadas S.; Palioura E.; Economou F.; Koutsilieris M.; Palimeri S.; Panidis D.; Diamanti-Kandarakis E.; Endocrine disruptors and polycystic ovary syndrome (PCOS): Elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab 2011,96(3),E480-E484

Rutkowska A.; Rachoń D.; Bisphenol A.; Bisphenol A.; BPA) and its potential role in the pathogenesis of the polycystic ovary syndrome (PCOS). Gynecol Endocrinol 2014,30(4),260-265

Takeuchi T.; Tsutsumi O.; Serum bisphenol a concentrations showed gender differences, possibly linked to androgen levels. Biochem Biophys Res Commun 2002,291(1),76-78

Takeuchi T.; Tsutsumi O.; Ikezuki Y.; Takai Y.; Taketani Y.; Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J 2004,51(2),165-169

Zhou W.; Liu J.; Liao L.; Han S.; Liu J.; Effect of bisphenol A on steroid hormone production in rat ovarian theca-interstitial and granulosa cells. Mol Cell Endocrinol 2008,283(1-2),12-18

Fernández M.; Bourguignon N.; Lux-Lantos V.; Libertun C.; Neonatal exposure to bisphenol a and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ Health Perspect 2010,118(9),1217-1222

Seachrist D.D.; Bonk K.W.; Ho S-M.; Prins G.S.; Soto A.M.; Keri R.A.; A review of the carcinogenic potential of bisphenol A. Reprod Toxicol 2016,59,167-182

Mallozzi M.; Leone C.; Manurita F.; Bellati F.; Caserta D.; Endocrine disrupting chemicals and endometrial cancer: An overview of recent laboratory evidence and epidemiological studies. Int J Environ Res Public Health 2017,14(3),14

Aghajanova L.; Giudice L.C.; Effect of bisphenol A on human endometrial stromal fibroblasts in vitro. Reprod Biomed Online 2011,22(3),249-256

Pollock T.; deCatanzaro D.; Presence and bioavailability of bisphenol A in the uterus of rats and mice following single and repeated dietary administration at low doses. Reprod Toxicol 2014,49,145-154

Diamanti-Kandarakis E.; Bourguignon J-P.; Giudice L.C.; Hauser R.; Prins G.S.; Soto A.M.; Zoeller R.T.; Gore A.C.; Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr Rev 2009,30(4),293-342

Aldad T.S.; Rahmani N.; Leranth C.; Taylor H.S.; Bisphenol-A exposure alters endometrial progesterone receptor expression in the nonhuman primate. Fertil Steril 2011,96(1),175-179

Hiroi H.; Tsutsumi O.; Takeuchi T.; Momoeda M.; Ikezuki Y.; Okamura A.; Yokota H.; Taketani Y.; Differences in serum bisphenol a concentrations in premenopausal normal women and women with endometrial hyperplasia. Endocr J 2004,51(6),595-600

Han T.S.; Lean M.E.; A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc Dis 2016,5

Shafiee M.N.; Seedhouse C.; Mongan N.; Chapman C.; Deen S.; Abu J.; Atiomo W.; Up-regulation of genes involved in the insulin signalling pathway (IGF1, PTEN and IGFBP1) in the endometrium may link polycystic ovarian syndrome and endometrial cancer. Mol Cell Endocrinol 2016,424,94-101

Dickerson S.M.; Gore A.C.; Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev Endocr Metab Disord 2007,8(2),143-159

Rich A.L.; Phipps L.M.; Tiwari S.; Rudraraju H.; Dokpesi P.O.; The increasing prevalence in intersex variation from toxicological dysregulation in fetal reproductive tissue differentiation and development by endocrine-disrupting chemicals. Environ Health Insights 2016,10,163-171

Strakovsky R.S.; Schantz S.L.; Impacts of bisphenol A (BPA) and phthalate exposures on epigenetic outcomes in the human placenta. Environ Epigenet 2018,4(3)

Newbold R.R.; Jefferson W.N.; Padilla-Banks E.; Prenatal exposure to bisphenol a at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environ Health Perspect 2009,117(6),879-885

Pinney S.E.; Mesaros C.A.; Snyder N.W.; Busch C.M.; Xiao R.; Aijaz S.; Ijaz N.; Blair I.A.; Manson J.M.; Second trimester amniotic fluid bisphenol A concentration is associated with decreased birth weight in term infants. Reprod Toxicol 2017,67,1-9

Snijder C.A.; Heederik D.; Pierik F.H.; Hofman A.; Jaddoe V.W.; Koch H.M.; Longnecker M.P.; Burdorf A.; Fetal growth and prenatal exposure to bisphenol A: the generation R study. Environ Health Perspect 2013,121(3),393-398

Burstyn I.; Martin J.W.; Beesoon S.; Bamforth F.; Li Q.; Yasui Y.; Cherry N.M.; Maternal exposure to bisphenol-A and fetal growth restriction: a case-referent study. Int J Environ Res Public Health 2013,10(12),7001-7014

Casas M.; Valvi D.; Ballesteros-Gomez A.; Gascon M.; Fernández M.F.; Garcia-Esteban R.; Iñiguez C.; Martínez D.; Murcia M.; Monfort N.; Luque N.; Rubio S.; Ventura R.; Sunyer J.; Vrijheid M.; Exposure to bisphenol a and phthalates during pregnancy and ultrasound measures of fetal growth in the INMA-sabadell cohort. Environ Health Perspect 2016,124(4),521-528

Xu X.; Chiung Y.M.; Lu F.; Qiu S.; Ji M.; Huo X.; Associations of cadmium, bisphenol A and polychlorinated biphenyl co-exposure in utero with placental gene expression and neonatal outcomes. Reprod Toxicol 2015,52,62-70

Morrissey R.E.; George J.D.; Price C.J.; Tyl R.W.; Marr M.C.; Kimmel C.A.; The developmental toxicity of bisphenol A in rats and mice. Fundam Appl Toxicol 1987,8(4),571-582

Miao M.; Yuan W.; He Y.; Zhou Z.; Wang J.; Gao E.; Li G.; Li D-K.; In utero exposure to bisphenol-A and anogenital distance of male offspring. Birth Defects Res A Clin Mol Teratol 2011,91(10),867-872

Huo W.; Xia W.; Wan Y.; Zhang B.; Zhou A.; Zhang Y.; Huang K.; Zhu Y.; Wu C.; Peng Y.; Jiang M.; Hu J.; Chang H.; Xu B.; Li Y.; Xu S.; Maternal urinary bisphenol A levels and infant low birth weight: A nested case-control study of the Health Baby Cohort in China. Environ Int 2015,85,96-103

Troisi J.; Mikelson C.; Richards S.; Symes S.; Adair D.; Zullo F.; Guida M.; Placental concentrations of bisphenol A and birth weight from births in the Southeastern U.S. Placenta 2014,35(11),947-952

Behnia F.; Peltier M.; Getahun D.; Watson C.; Saade G.; Menon R.; High bisphenol A (BPA) concentration in the maternal, but not fetal, compartment increases the risk of spontaneous preterm delivery. J Matern Fetal Neonatal Med 2016,29(22),3583-3589

Cantonwine D.E.; Ferguson K.K.; Mukherjee B.; McElrath T.F.; Meeker J.D.; Urinary Bisphenol A Levels during Pregnancy and Risk of Preterm Birth. Environ Health Perspect 2015,123(9),895-901

Weinberger B.; Vetrano A.M.; Archer F.E.; Marcella S.W.; Buckley B.; Wartenberg D.; Robson M.G.; Klim J.; Azhar S.; Cavin S.; Wang L.; Rich D.Q.; Effects of maternal exposure to phthalates and bisphenol A during pregnancy on gestational age. J Matern Fetal Neonatal Med 2014,27(4),323-327

Padmanabhan V.; Siefert K.; Ransom S.; Johnson T.; Pinkerton J.; Anderson L.; Tao L.; Kannan K.; Maternal bisphenol-A levels at delivery: a looming problem? J Perinatol 2008,28(4),258-263

Smarr M.M.; Grantz K.L.; Sundaram R.; Maisog J.M.; Kannan K.; Louis G.M.B.; Parental urinary biomarkers of preconception exposure to bisphenol A and phthalates in relation to birth outcomes. Environ Health 2015,14,73

Guida M.; Troisi J.; Ciccone C.; Granozio G.; Cosimato C.; Di Spiezio Sardo A.; Ferrara C.; Guida M.; Nappi C.; Zullo F.; Di Carlo C.; Bisphenol A and congenital developmental defects in humans. Mutat Res 2015,774,33-39

Balakrishnan B.; Henare K.; Thorstensen E.B.; Ponnampalam A.P.; Mitchell M.D.; Transfer of bisphenol A across the human placenta. Am J Obstet Gynecol 2010,202(4),393.e1-393.e7

Machtinger R.; Combelles C.M.H.; Missmer S.A.; Correia K.F.; Williams P.; Hauser R.; Racowsky C.; Bisphenol-A and human oocyte maturation in vitro. Hum Reprod 2013,28(10),2735-2745

Christiansen S.; Axelstad M.; Boberg J.; Vinggaard A.M.; Pedersen G.A.; Hass U.; Low-dose effects of bisphenol A on early sexual development in male and female rats. Reproduction 2014,147(4),477-487

Timms B.G.; Howdeshell K.L.; Barton L.; Bradley S.; Richter C.A.; vom Saal F.S.; Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proc Natl Acad Sci USA 2005,102(19),7014-7019

Ho S-M.; Tang W-Y.; Belmonte de Frausto J.; Prins G.S.; Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 2006,66(11),5624-5632

Chen J.; Wu S.; Wen S.; Shen L.; Peng J.; Yan C.; Cao X.; Zhou Y.; Long C.; Lin T.; He D.; Hua Y.; Wei G.; The mechanism of environmental endocrine disruptors (DEHP) induces epigenetic transgenerational inheritance of cryptorchidism. PLoS One 2015,10(6)

Fernández M.F.; Arrebola J.P.; Jiménez-Díaz I.; Sáenz J.M.; Molina-Molina J.M.; Ballesteros O.; Kortenkamp A.; Olea N.; Bisphenol A and other phenols in human placenta from children with cryptorchidism or hypospadias. Reprod Toxicol 2016,59,89-95

Fiorini C.; Tilloy-Ellul A.; Chevalier S.; Charuel C.; Pointis G.; Sertoli cell junctional proteins as early targets for different classes of reproductive toxicants. Reprod Toxicol 2004,18(3),413-421

Salian S.; Doshi T.; Vanage G.; Neonatal exposure of male rats to Bisphenol A impairs fertility and expression of sertoli cell junctional proteins in the testis. Toxicology 2009,265(1-2),56-67

Chianese R.; Viggiano A.; Urbanek K.; Cappetta D.; Troisi J.; Scafuro M.; Guida M.; Esposito G.; Ciuffreda L.P.; Rossi F.; Berrino L.; Fasano S.; Pierantoni R.; De Angelis A.; Meccariello R.; Chronic exposure to low dose of bisphenol A impacts on the first round of spermatogenesis via SIRT1 modulation. Sci Rep 2018,8(1),2961

Zhang G.L.; Zhang X.F.; Feng Y.M.; Li L.; Huynh E.; Sun X.F.; Sun Z.Y.; Shen W.; Exposure to bisphenol A results in a decline in mouse spermatogenesis. Reprod Fertil Dev 2013,25(6),847-859

Xie M.; Bu P.; Li F.; Lan S.; Wu H.; Yuan L.; Wang Y.; Neonatal bisphenol A exposure induces meiotic arrest and apoptosis of spermatogenic cells. Oncotarget 2016,7(9),10606-10615

Liu C.; Duan W.; Li R.; Xu S.; Zhang L.; Chen C.; He M.; Lu Y.; Wu H.; Pi H.; Luo X.; Zhang Y.; Zhong M.; Yu Z.; Zhou Z.; Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity. Cell Death Dis 2013,4

Allard P.; Colaiácovo M.P.; Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc Natl Acad Sci USA 2010,107(47),20405-20410

Horan T.S.; Pulcastro H.; Lawson C.; Gerona R.; Martin S.; Gieske M.C.; Sartain C.V.; Hunt P.A.; Replacement Bisphenols Adversely Affect Mouse Gametogenesis with Consequences for Subsequent Generations. Curr Biol 2018,28(18),2948-2954.e3

Sasaki M.; Lange J.; Keeney S.; Genome destabilization by homologous recombination in the germ line. Nat Rev Mol Cell Biol 2010,11(3),182-195

Mínguez-Alarcón L.; Hauser R.; Gaskins A.J.; Effects of bisphenol A on male and couple reproductive health: A review. Fertil Steril 2016,106(4),864-870

Meeker J.D.; Ehrlich S.; Toth T.L.; Wright D.L.; Calafat A.M.; Trisini A.T.; Ye X.; Hauser R.; Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod Toxicol 2010,30(4),532-539

Rahman M.S.; Kwon W.S.; Lee J.S.; Yoon S.J.; Ryu B.Y.; Pang M.G.; Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci Rep 2015,5,9169

Li J.; Mao R.; Zhou Q.; Ding L.; Tao J.; Ran M.M.; Gao E.S.; Yuan W.; Wang J.T.; Hou L.F.; Exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of ERK signal pathway. Toxicol Mech Methods 2016,26(3),180-188

Kotwicka M.; Skibinska I.; Piworun N.; Jendraszak M.; Chmielewska M.; Jedrzejczak P.; Bisphenol A modifies human spermatozoa motility in vitro. J Medical Sci 2016,85,39-45

Lan H.C.; Wu K.Y.; Lin I.W.; Yang Z.J.; Chang A.A.; Hu M.C.; Bisphenol A disrupts steroidogenesis and induces a sex hormone imbalance through c-Jun phosphorylation in Leydig cells. Chemosphere 2017,185,237-246

Feng Y.; Jiao Z.; Shi J.; Li M.; Guo Q.; Shao B.; Effects of bisphenol analogues on steroidogenic gene expression and hormone synthesis in H295R cells. Chemosphere 2016,147,9-19

Ullah A.; Pirzada M.; Jahan S.; Ullah H.; Turi N.; Ullah W.; Siddiqui M.F.; Zakria M.; Lodhi K.Z.; Khan M.M.; Impact of low-dose chronic exposure to bisphenol A and its analogue bisphenol B, bisphenol F and bisphenol S on hypothalamo-pituitary-testicular activities in adult rats: A focus on the possible hormonal mode of action. Food Chem Toxicol 2018,121,24-36

Desdoits-Lethimonier C.; Lesné L.; Gaudriault P.; Zalko D.; Antignac J.P.; Deceuninck Y.; Platel C.; Dejucq-Rainsford N.; Mazaud-Guittot S.; Jégou B.; Parallel assessment of the effects of bisphenol A and several of its analogs on the adult human testis. Hum Reprod 2017,32(7),1465-1473

Roelofs M.J.; van den Berg M.; Bovee T.F.; Piersma A.H.; van Duursen M.B.; Structural bisphenol analogues differentially target steroidogenesis in murine MA-10 Leydig cells as well as the glucocorticoid receptor. Toxicology 2015,329,10-20

Eladak S.; Grisin T.; Moison D.; Guerquin M.J.; N’Tumba-Byn T.; Pozzi-Gaudin S.; Benachi A.; Livera G.; Rouiller-Fabre V.; Habert R.; A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertil Steril 2015,103(1),11-21

Kokkinaki M.; Lee T.L.; He Z.; Jiang J.; Golestaneh N.; Hofmann M.C.; Chan W.Y.; Dym M.; The molecular signature of spermatogonial stem/progenitor cells in the 6-day-old mouse testis. Biol Reprod 2009,80(4),707-717

Liang S.; Yin L.; Shengyang Yu K.; Hofmann M.C.; Yu X.; High-Content Analysis Provides Mechanistic Insights into the Testicular Toxicity of Bisphenol A and Selected Analogues in Mouse Spermatogonial Cells. Toxicol Sci 2017,155(1),43-60

Sidorkiewicz I.; Czerniecki J.; Jarząbek K.; Zbucka-Krętowska M.; Wołczyński S.; Cellular, transcriptomic and methylome effects of individual and combined exposure to BPA, BPF, BPS on mouse spermatocyte GC-2 cell line. Toxicol Appl Pharmacol 2018,359,1-11

Shi M.; Sekulovskii N.; MacLean J.A. II; Hayashi K.; Effects of bisphenol A analogues on reproductive functions in mice. Reprod Toxicol 2017,73,280-291

Shi M.; Sekulovski N.; MacLean J.A.; Hayashi K.; Prenatal exposure to bisphenol a analogues on male reproductive functions in mice. Toxicol Sci 2018,163(2),620-31

Jégou B.; The Sertoli-germ cell communication network in mammals. Int Rev Cytol 1993,147,25-96

Liu C.; Wang H.; Shang Y.; Liu W.; Song Z.; Zhao H.; Wang L.; Jia P.; Gao F.; Xu Z.; Yang L.; Gao F.; Li W.; Autophagy is required for ectoplasmic specialization assembly in sertoli cells. Autophagy 2016,12(5),814-832

Ullah H.; Ambreen A.; Ahsan N.; Jahan S.; Bisphenol S induces oxidative stress and DNA damage in rat spermatozoa in vitro and disrupts daily sperm production in vivo. J. Toxicol. Environmental. Chem 2017,99,953-965