Neuro-heuristic computational intelligence for solving nonlinear pantograph systems

Zhejiang University Press - Tập 18 - Trang 464-484 - 2017
Abdul Majid Wazwaz1, Muhammad Asif Zahoor Raja2, Muhammed Ibrahem Syam3, Iftikhar Ahmad4, Imtiaz Khan5
1Department of Mathematics, Saint Xavier University, Chicago, USA
2Department of Electrical Engineering, COMSATS Institute of Information Technology, Attock, Pakistan
3Department of Mathematical Sciences, United Arab Emirates University, Al-Ain Box, UAE
4Department of Mathematics, University of Gujrat, Gujrat, Pakistan
5Department of Mathematics, Preston University, Islamabad Campus, Kohat, Islamabad, Pakistan

Tóm tắt

We present a neuro-heuristic computing platform for finding the solution for initial value problems (IVPs) of nonlinear pantograph systems based on functional differential equations (P-FDEs) of different orders. In this scheme, the strengths of feed-forward artificial neural networks (ANNs), the evolutionary computing technique mainly based on genetic algorithms (GAs), and the interior-point technique (IPT) are exploited. Two types of mathematical models of the systems are constructed with the help of ANNs by defining an unsupervised error with and without exactly satisfying the initial conditions. The design parameters of ANN models are optimized with a hybrid approach GA–IPT, where GA is used as a tool for effective global search, and IPT is incorporated for rapid local convergence. The proposed scheme is tested on three different types of IVPs of P-FDE with orders 1–3. The correctness of the scheme is established by comparison with the existing exact solutions. The accuracy and convergence of the proposed scheme are further validated through a large number of numerical experiments by taking different numbers of neurons in ANN models.

Tài liệu tham khảo

Agarwal, R.P., Chow, Y.M., 1986. Finite difference methods for boundary-value problems of differential equations with deviating arguments. Comput. Math. Appl., 12(11): 1143–1153. http://dx.doi.org/10.1016/0898-1221(86)90018-0 Arqub, O.A., Zaer, A.H., 2014. Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inform. Sci., 279: 396–415. http://dx.doi.org/10.1016/j.ins.2014.03.128 Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F., 2007. Intoduction to the Theory of Functional Differential Equations: Methods and Applications. Hindawi Publishing Corporation, New York, USA. http://dx.doi.org/10.1155/9789775945495 Barro, G., So, O., Ntaganda, J.M., et al., 2008. A numerical method for some nonlinear differential equation models in biology. Appl. Math. Comput., 200(1): 28–33. http://dx.doi.org/10.1016/j.amc.2007.10.041 Chakraverty, S., Mall, S., 2014. Regression-based weight generation algorithm in neural network for solution of initial and boundary value problems. Neur. Comput. Appl., 25(3): 585–594. http://dx.doi.org/10.1007/s00521-013-1526-4 Dehghan, M., Salehi, R., 2010. Solution of a nonlinear time-delay model in biology via semi-analytical approaches. Comput. Phys. Commun., 181: 1255–1265. http://dx.doi.org/10.1016/j.cpc.2010.03.014 Derfel, G., Iserles, A., 1997. The pantograph equation in the complex plane. J. Math. Anal. Appl., 213(1): 117–132. http://dx.doi.org/10.1006/jmaa.1997.5483 Evans, D.J., Raslan, K.R., 2005. The Adomian decomposition method for solving delay differential equation. Int. J. Comput. Math., 82(1): 49–54. http://dx.doi.org/10.1080/00207160412331286815 Holland, J.H., 1975. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The University of Michigan Press, Ann Arbor, USA. Iserles, A., 1993. On the generalized pantograph functionaldifferential equation. Eur. J. Appl. Math., 4(1): 1–38. http://dx.doi.org/10.1017/S0956792500000966 Khan, J.A., Raja, M.A.Z., Qureshi, I.M., 2011. Novel approach for van der Pol oscillator on the continuous time domain. Chin. Phys. Lett., 28:110205. http://dx.doi.org/10.1088/0256-307X/28/11/110205 Khan, J.A., Raja, M.A.Z., Syam, M.A., et al., 2015. Design and application of nature inspired computing approach for non-linear stiff oscillatory problems. Neur. Comput. Appl., 26(7): 1763–1780. http://dx.doi.org/10.1007/s00521-015-1841-z Mall, S., Chakraverty, S., 2014a. Chebyshev neural network based model for solving Lane–Emden type equations. Appl. Math. Comput., 247: 100–114. http://dx.doi.org/10.1016/j.amc.2014.08.085 Mall, S., Chakraverty, S., 2014b. Numerical solution of nonlinear singular initial value problems of Emden–Fowler type using Chebyshev neural network method. Neurocomputing, 149(B):975–982. http://dx.doi.org/10.1016/j.neucom.2014.07.036 McFall, K.S., 2013. Automated design parameter selection for neural networks solving coupled partial differential equations with discontinuities. J. Franklin Inst., 350(2): 300–317. http://dx.doi.org/10.1016/j.jfranklin.2012.11.003 Ockendon, J.R., Tayler, A.B., 1971. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. A, 322(1551): 447–468. http://dx.doi.org/10.1098/rspa.1971.0078 Pandit, S., Kumar, M., 2014. Haar wavelet approach for numerical solution of two parameters singularly perturbed boundary value problems. Appl. Math. Inform. Sci., 8(6): 2965–2974. Peng, Y.G., Jun, W., Wei, W., 2014. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(2): 139–146. http://dx.doi.org/10.1631/jzus.C1300182 Potra, F.A., Wright, S.J., 2000. Interior-point methods. J. Comput. Appl. Math., 124(1-2):281–302. http://dx.doi.org/10.1016/S0377-0427(00)00433-7 Raja, M.A.Z., 2014a. Numerical treatment for boundary value problems of pantograph functional differential equation using computational intelligence algorithms. Appl. Soft Comput., 24: 806–821. http://dx.doi.org/10.1016/j.asoc.2014.08.055 Raja, M.A.Z., 2014b. Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect. Sci., 26(3): 195–214. http://dx.doi.org/10.1080/09540091.2014.907555 Raja, M.A.Z., 2014c. Stochastic numerical techniques for solving Troesch’s problem. Inform. Sci., 279: 860–873. http://dx.doi.org/10.1016/j.ins.2014.04.036 Raja, M.A.Z., 2014d. Unsupervised neural networks for solving Troesch’s problem. Chin. Phys. B, 23(1):018903. Raja, M.A.Z., Ahmad, S.I., 2014. Numerical treatment for solving one-dimensional Bratu problem using neural networks. Neur. Comput. Appl., 24(3): 549–561. http://dx.doi.org/10.1007/s00521-012-1261-2 Raja, M.A.Z., Samar, R., 2014a. Numerical treatment for nonlinear MHD Jeffery–Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing, 124: 178–193. http://dx.doi.org/10.1016/j.neucom.2013.07.013 Raja, M.A.Z., Samar, R., 2014b. Numerical treatment of nonlinear MHD Jeffery–Hamel problems using stochastic algorithms. Comput. Fluids, 91: 28–46. http://dx.doi.org/10.1016/j.compfluid.2013.12.005 Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010a. Evolutionary computational intelligence in solving the fractional differential equations. Asian Conf. on Intelligent Information and Database Systems, p.231–240. http://dx.doi.org/10.1007/978-3-642-12145-6_24 Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010b. Heuristic computational approach using swarm intelligence in solving fractional differential equations. Proc. 12th Annual Conf. Companion on Genetic and Evolutionary Computation, p.2023–2026. http://dx.doi.org/10.1145/1830761.1830850 Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010c. A new stochastic approach for solution of Riccati differential equation of fractional order. Ann. Math. Artif. Intell., 60(3): 229–250. http://dx.doi.org/10.1007/s10472-010-9222-x Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2011a. Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence. Math. Prob. Eng., 2011:765075. http://dx.doi.org/10.1155/2011/675075 Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2011b. Swarm intelligence optimized neural network for solving fractional order systems of Bagley-Tervik equation. Eng. Intell. Syst., 19(1): 41–51. Raja, M.A.Z., Khan, J.A., Ahmad, S.I., et al., 2012. A new stochastic technique for Painlevé equation-I using neural network optimized with swarm intelligence. Comput. Intell. Neur., 2012:721867. http://dx.doi.org/10.1155/2012/721867 Raja, M.A.Z., Ahmad, S.I., Samar, R., 2013. Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neur. Comput. Appl., 23(7): 2199–2210. http://dx.doi.org/10.1007/s00521-012-1170-4 Raja, M.A.Z., Samar, R., Rashidi, M.M., 2014a. Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neur. Comput. Appl., 25(7): 1585–1601. http://dx.doi.org/10.1007/s00521-014-1641-x Raja, M.A.Z., Ahmad, S.I., Samar, R., 2014b. Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neur. Comput. Appl., 25(7): 1723–1739. http://dx.doi.org/10.1007/s00521-014-1664-3 Raja, M.A.Z., Khan, J.A., Shah, S.M., et al., 2015a. Comparison of three unsupervised neural network models for first Painlevé transcendent. Neur. Comput. Appl., 26(5): 1055–1071. http://dx.doi.org/10.1007/s00521-014-1774-y Raja, M.A.Z., Sabir, Z., Mahmood, N., et al., 2015b. Design of stochastic solvers based on genetic algorithms for solving nonlinear equations. Neur. Comput. Appl., 26(1): 1–23. http://dx.doi.org/10.1007/s00521-014-1676-z Raja, M.A.Z., Manzar, M.A., Samar, R., 2015c. An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl. Math. Model., 39(10-11):3075–3093. http://dx.doi.org/10.1016/j.apm.2014.11.024 Raja, M.A.Z., Khan, J.A., Behloul, D., et al., 2015d. Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl. Soft Comput., 26: 244–256. http://dx.doi.org/10.1016/j.asoc.2014.10.009 Raja, M.A.Z., Khan, J.A., Haroon, T., 2015e. Numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J. Taiw. Inst. Chem. Eng., 48: 26–39. http://dx.doi.org/10.1016/j.jtice.2014.10.018 Saadatmandi, A., Dehghan, M., 2009. Variational iteration method for solving a generalized pantograph equation. Comput. Math. Appl., 58(11-12):2190–2196. http://dx.doi.org/10.1016/j.camwa.2009.03.017 Sedaghat, S., Ordokhani, Y., Dehghan, M., 2012. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonl. Sci. Numer. Simul., 17(12): 4815–4830. http://dx.doi.org/10.1016/j.cnsns.2012.05.009 Shakeri, F., Dehghan, M., 2010. Application of the decomposition method of Adomian for solving the pantograph equation of order m. J. Phys. Sci., 65(5): 453–460. http://dx.doi.org/10.1515/zna-2010-0510 Srinivasan, S., Saghir, M.Z., 2014. Predicting thermodiffusion in an arbitrary binary liquid hydrocarbon mixtures using artificial neural networks. Neur. Comput. Appl., 25(5): 1193–1203. http://dx.doi.org/10.1007/s00521-014-1603-3 Tang, L., Ying, G., Liu, Y.J., 2014. Adaptive near optimal neural control for a class of discrete-time chaotic system. Neur. Comput. Appl., 25(5): 1111–1117. http://dx.doi.org/10.1007/s00521-014-1595-z Tohidi, E., Bhrawy, A.H., Erfani, K.A., 2013. A collocation method based on Berneoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model, 37(6): 4283–4294. http://dx.doi.org/10.1016/j.apm.2012.09.032 Troiano, L., Cosimo, B., 2014. Genetic algorithms supporting generative design of user interfaces: examples. Inform. Sci., 259: 433–451. http://dx.doi.org/10.1016/j.ins.2012.01.006 Uysal, A., Raif, B., 2013. Real-time condition monitoring and fault diagnosis in switched reluctance motors with Kohonen neural network. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(12): 941–952. http://dx.doi.org/10.1631/jzus.C1300085 Wright, S.J., 1997. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA. Xu, D.Y., Yang, S.L., Liu, R.P., 2013. A mixture of HMM, GA,and Elman network for load prediction in cloud-oriented data centers. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(11): 845–858. http://dx.doi.org/10.1631/jzus.C1300109 Yusufoglu, E., 2010. An efficient algorithm for solving gener alized pantograph equations with linear functional argument. Appl. Math. Comput., 217(7): 3591–3595. http://dx.doi.org/10.1016/j.amc.2010.09.005 Yüzbasi, S., Mehmet, S., 2013. An exponential approximation for solutions of generalized pantograph-delay differential equations. Appl. Math. Model., 37(22): 9160–9173. http://dx.doi.org/10.1016/j.apm.2013.04.028 Yüzbasi, S., Sahin, N., Sezer, M., 2011. A Bessel collocation method for numerical solution of generalized pantograph equations. Numer. Meth. Part. Diff. Eq., 28(4): 1105–1123. http://dx.doi.org/10.1002/num.20660 Zhang, H.G., Wang, Z., Liu, D., 2008. Global asymptotic stability of recurrent neural networks with multiple time-varying delays. IEEE Trans. Neur. Netw., 19(5): 855–873. http://dx.doi.org/10.1109/TNN.2007.912319 Zhang, Y.T., Liu, C.Y., Wei, S.S., et al., 2014. ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(7): 564–573. http://dx.doi.org/10.1631/jzus.C1300264 Zoveidavianpoor, M., 2014. A comparative study of artificial neural network and adaptive neurofuzzy inference system for prediction of compressional wave velocity. Neur. Comput. Appl., 25(5): 1169–1176. http://dx.doi.org/10.1007/s00521-014-1604-2