Neuro-fuzzy methods for nonlinear system identification

Annual Reviews in Control - Tập 27 - Trang 73-85 - 2003
Robert Babuška1, Henk Verbruggen1
1Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Tài liệu tham khảo

Abonyi, J., & Babuška, R. (2000). Local and global identification and interpretation of parameters in Takagi–Sugeno fuzzy models. In Proceedings of the 9th IEEE International Conference on Fuzzy Systems (pp. 835–840), San Antonio, USA. Babuška, R. (1998). Fuzzy modeling for control. Boston: Kluwer Academic Publishers. Brown, M., & Harris, C. (1994). Neuro-fuzzy adaptive modelling and control. New York: Prentice-Hall. Hall, R. C., & Seborg, D. E. (1989). Modelling and self-tuning control of a multivariable pH neutralization process. Part I: Modelling and multi-loop control. In Proceedings of American Control Conference (Vol. 2, pp. 1822–1827), Pittsburgh, PA. Hellendoorn, H., & Driankov, D. (Eds.). (1997). Fuzzy model identification: Selected approaches. Berlin, Germany: Springer-Verlag. Jang, 1993, ANFIS: Adaptive-network-based fuzzy inference systems, IEEE Transactions on Systems, Man & Cybernetics, 23, 665, 10.1109/21.256541 Jang, 1993, Functional equivalence between radial basis function networks and fuzzy inference systems, IEEE Transactions on Neural Networks, 4, 156, 10.1109/72.182710 Jang, J.-S.R., Sun, C.-T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence. Upper Saddle River, NJ: Prentice-Hall. Johansen, T. A. (1994). Operating regime based process modelling and identification. Ph.D. dissertation, The Norwegian Institute of Technology, University of Trondheim. Trondheim, Norway. Mathworks, T. (2001). Fuzzy logic toolbox for use with Matlab. User’s guide, version 2. Natick, MA: The Mathworks, Inc. Nelles, 2000, Comparison of two construction algorithms for Takagi–Sugeno fuzzy models, International Journal of Applied Mathematics and Computer Science, 10, 835 Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing. Cambridge, MA: MIT Press. Tanaka, 1998, Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs, IEEE Transactions on Fuzzy Systems, 6, 250, 10.1109/91.669023