Neural network modeling and principal component analysis of antibacterial activity of chitosan/AgCl-TiO2 colloid treated cotton fabric

Fibers and Polymers - Tập 16 - Trang 1142-1149 - 2015
Samander Ali Malik1,2, Rabia Almas Arain1, Zeeshan Khatri1, Sidra Saleemi1, Chokri Cherif2
1Department of Textile Engineering, Mehran University of Engineering & Technology, Jamshoro, Pakistan
2Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Dresden, Germany

Tóm tắt

The present work was undertaken to predict the antibacterial activity of chitosan/AgCl-TiO2 colloid treated cotton fabric with artificial neural network (ANN) using chitosan/AgCl-TiO2 concentration and curing time as predictors. Cotton fabric samples were prepared by treating with different blends of chitosan/AgCl-TiO2 colloid and varying curing time. The antibacterial activity against Staphylococcus aureus (gram positive) and Escherichia coli (gram negative) was measured in terms of % bacterial reduction (% BR). Feedforward neural network models were trained with combination of Levenberg- Marqaurdt algorithm and Bayesian regularization support incorporated in backpropagation. The 10 % cross-validation technique was also carried out to rule out any chance of over-fitting of the trained networks. Furthermore trend analysis was also performed with developed models to understand the effect of input parameters. The promising results realized with excellent coefficient of determination and acceptable mean absolute error during network training and their testing on the novel data patterns. The developed models will benefit the design and development of clean and hygienic textiles. Principal component analysis (PCA) was also performed to visualize and analyze the correlation between the variables and the trend of individual observation on two-dimensional space.

Tài liệu tham khảo

Y. L. Lam, C. W. Kan, and C. W. M. Yuen, Text. Prog., 44, 175 (2012). S. H. Lim and S. M. Hudson, J. Macromol. Sci. Polym. Rev., 43, 223 (2003). H. Ortega-Ortiz, B. Gutierrez-Rodriguez, G. Cadenas-Pliego, and L. I. Jimenez, Braz. Arch. Biol. Technol., 53, 623 (2010). M. Joshi, S. W. Ali, R. Purwar, and S. Rajendran, Indian J. Fibre Text. Res., 34, 295 (2009). R. A. Arain, Z. Khatri, M. H. Memon, and I.-S. Kim, Carbohydr. Polym. 96, 326 (2013). R. Purwar and M. Joshi, AATCC Rev., 4, 22 (2004). M. M. Fouda, E. S. Abdel-Halim, and S. S. Al-Deyab, Carbohydr. Polym., 92, 943 (2013). T. Textor, M. M. Fouda, and B. Mahltig, Appl. Surf. Sci., 256, 2337 (2010). I. Chopra, J. Antimicrob. Chemother., 59, 587 (2007). R. Mahendra and Y. Alka, Biotechnol. Adv., 27, 76 (2009). H.-S. Bae, H.-W. Park, E.-J. Ryou, and K.-M. Jeong, J. Korean Soc. Cloth. Text., 32, 705 (2008). M. Gouda and S. M. A. S. Keshk, Carbohydr. Polym., 80, 504 (2010). V. Thomas, M. Bajpai, and S. K. Bajpai, J. Ind. Text., 40, 229 (2011). Z. Hu, W. L. Chan, and Y. S. Szeto, J. Appl. Polym. Sci., 108, 52 (2008). A. S. Nateri, A. Oroumei, S. Dadvar, A. Fallah-Shojaie, G. H. Khayati, and O. Emamgholipur, J. Comput. Theor. Nanosci., 7, 1554 (2010). A. S. Nateri, S. Dadvar, A. Oroumei, and E. Ekrami, J. Comput. Theor. Nanosci., 8, 713 (2011). S. Lata, B. K. Sharma, and G. P. S. Raghava, BMC Bioinformatics, 8, 263 (2007). E. Akbari, Z. Buntat, A. Enzevaee, M. Ebrahimi, A. H. Yazdavar, and R. Yusof, Chemometrics Intell. Lab. Syst., 137, 173 (2014). J. Jaén-Oltra, M. T. Salabert-Salvador, F. J. García-March, F. Pérez-Giménez, and F. Tomás-Vert, J. Med. Chem., 43, 1143 (2000). M. N. Melo, R. Ferre, L. Feliu, E. Bardají, M. Planas, and N. A. R. B. Castanho, PLoSONE, 6, e28549 (2011). M. Wnuk, M. P. Marszall, A. Zapecka, A. Nowaczyk, J. Krysinski, J. Romaszko, P. Kawczak, T. Baczek, and A. Bucinski, Cent. Eur. J. Med., 8, 1 (2013). A. Hladnik and T. Muck, Dyes Pigment., 54, 253 (2002). Z. Zupin, A. Hladnik, and K. Dimitrovski, Text. Res. J., 82, 117 (2012). T. Hamdi, A. Ghith, and F. Fayala, Autex Res. J., 14, 22 (2014). M. H. El-Rafie, A. A. Mohamed, T. I. Shaheen, and A. Hebeish, Carbohydr. Polym., 80, 779 (2010). B. Tomšic, B. Simoncic, B. Orel, M. Žerjav, H. Schroers, A. Simoncic, and Z. Samardžija, Carbohydr. Polym., 75, 618 (2009). S. W. Ali, S. Rajendran, and M. Joshi, Carbohydr. Polym., 83, 438 (2011). D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. DeJong, P. J. Lewi, and J. Smeyers Verbeke, in “Handbook of Chemometrics and Qualimetrics: Part A” (D. L. Massart Eds.), pp.520–535, Elsevier, Amsterdam, 1997. O. Nelles, “Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models”, 2nd ed., Springer New York, 2001. B. M. Wilamowski, S. Iplikci, O. Kaynak, and M. Ö. Efe, Proc. IEEE IJCNN '01. USA, 3, 1778 (2001). T. L. Fine, “Feedforward Neural Network Methodology”, Springer Verlag New York, 1999. D. J. C. MacKay, Neural Comput., 4, 448 (1991). F. D. Foresee and M. T. Hagan, Proc. IEEE IJCNN '97. USA, 3, 1930 (1997).