Neural mechanisms of perceptual decision-making and their link to neuropsychiatric symptoms in multiple sclerosis

Multiple Sclerosis and Related Disorders - Tập 33 - Trang 139-145 - 2019
Martin Weygandt1,2,3, Janina Behrens1,4, Jelena Brasanac1,5, Eveline Söder6, Lil Meyer-Arndt1, Katharina Wakonig1, Kerstin Ritter2,3, Alexander U. Brandt1, Judith Bellmann-Strobl1,7, Stefan M. Gold5,8, John-Dylan Haynes1,2,3, Friedemann Paul1,4,7
1Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Excellence Cluster NeuroCure, Berlin 10117, Germany
2Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Department of Neurology, Berlin 10117, Germany
3Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Bernstein Center for Computational Neuroscience, Berlin 10117, Germany
4Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Berlin 10117, Germany
5Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Berlin 12203, Germany
6Department of Clinical Psychology and Psychotherapy, Institute of Psychology, University of Hamburg, Hamburg, Germany
7Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin 13125, Germany
8Institute of Neuroimmunology and Multiple Sclerosis (INIMS), Center for Molecular Neurobiology, University Medical Center, Hamburg 20251, Germany

Tài liệu tham khảo

Akbar, 2016, Brain activation patterns and cognitive processing speed in patients with pediatric-onset multiple sclerosis, J. Clin. Exp. Neuropsychol., 38, 393, 10.1080/13803395.2015.1119255 Albers, 2013, Shared representations for working memory and mental imagery in early visual cortex, Curr. Biol., 23, 1427, 10.1016/j.cub.2013.05.065 Amato, 2010, Cognitive impairment in early stages of multiple sclerosis, Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol., 31, S211 Borisow, 2012, Expert recommendations to personalization of medical approaches in treatment of multiple sclerosis: an overview of family planning and pregnancy, EPMA J., 22, 9, 10.1186/1878-5085-3-9 Chen, 2016, The Representation of object-directed action and function knowledge in the human brain, Cereb. Cortex, 26, 1609, 10.1093/cercor/bhu328 Chiaravalloti, 2008, Cognitive impairment in multiple sclerosis, Lancet Neurol., 7, 1139, 10.1016/S1474-4422(08)70259-X Cohen, 1988 Crawford, 2004, The positive and negative affect schedule (PANAS): construct validity, measurement properties and normative data in a large non-clinical sample, Br. J. Clin. Psychol., 43, 245, 10.1348/0144665031752934 Evans, 2016, Perceptual decisions regarding object manipulation are selectively impaired in apraxia or when tDCS is applied over the left IPL, Neuropsychologia, 86, 153, 10.1016/j.neuropsychologia.2016.04.020 Fruehwald, 2001, Depression and quality of life in multiple sclerosis, Acta Neurol. Scand., 104, 257, 10.1034/j.1600-0404.2001.00022.x Genova, 2009, Examination of processing speed deficits in multiple sclerosis using functional magnetic resonance imaging, J. Int. Neuropsychol. Soc., 15, 383, 10.1017/S1355617709090535 Geurts, 2012, Measurement and clinical effect of grey matter pathology in multiple sclerosis, Lancet Neurol., 11, 1082, 10.1016/S1474-4422(12)70230-2 Gold, 2001, Disease specific quality of life instruments in multiple sclerosis: validation of the Hamburg Quality of Life Questionnaire in Multiple Sclerosis (HAQUAMS), Mult. Scler., 7, 119, 10.1177/135245850100700208 Hanks, 2017, Perceptual decision making in rodents, monkeys, and humans, Neuron, 93, 15, 10.1016/j.neuron.2016.12.003 Hasselmann, 2016, Characterizing the phenotype of multiple sclerosis-associated depression in comparison with idiopathic major depression, Mult. Scler., 22, 1476, 10.1177/1352458515622826 Hautzinger, 2009 Heekeren, 2006, Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality, Proc. Natl. Acad. Sci. USA, 103, 10023, 10.1073/pnas.0603949103 Just, 2001, Mental rotation of objects retrieved from memory: a functional MRI study of spatial processing, J. Exp. Psychol., 130, 493, 10.1037/0096-3445.130.3.493 Kamm, 2012, Limb apraxia in multiple sclerosis: prevalence and impact on manual dexterity and activities of daily living, Arch. Phys. Med. Rehabil., 93, 1081, 10.1016/j.apmr.2012.01.008 Kleeberg, 2004, Altered decision-making in multiple sclerosis: a sign of impaired emotional reactivity?, Ann. Neurol., 56, 787, 10.1002/ana.20277 Kobelt, 2006, Costs and quality of life in multiple sclerosis in Europe: method of assessment and analysis, Eur. J. Health Econ. HEPAC Health Econ. Prev. Care, 7, S5, 10.1007/s10198-006-0365-y Kos, 2005, Evaluation of the modified fatigue impact scale in four different European countries, Mult. Scler., 11, 76, 10.1191/1352458505ms1117oa Krieger, 2016, The topographical model of multiple sclerosis: a dynamic visualization of disease course, Neurol. Neuroimmunol. Neuroinflamm., 3, e279, 10.1212/NXI.0000000000000279 Kurtzke, 1983, Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS), Neurology, 33, 1444, 10.1212/WNL.33.11.1444 Langdon, 2011, Cognition in multiple sclerosis, Curr. Opin. Neurol., 24, 244, 10.1097/WCO.0b013e328346a43b Muhlert, 2015, The grey matter correlates of impaired decision-making in multiple sclerosis, J. Neurol. Neurosurg. Psychiatry, 86, 530, 10.1136/jnnp-2014-308169 Panichello, 2017, Internal valence modulates the speed of object recognition, Sci. Rep., 7, 361, 10.1038/s41598-017-00385-4 Paul, 2016, Pathology and MRI: exploring cognitive impairment in MS, Acta Neurol. Scand., 134, 24, 10.1111/ane.12649 Pearson, 2015, Mental imagery: functional mechanisms and clinical applications, Trends Cognit. Sci., 19, 590, 10.1016/j.tics.2015.08.003 Polman, 2011, Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria, Ann. Neurol., 69, 292, 10.1002/ana.22366 Reich, 2018, Multiple sclerosis, N. Engl. J. Med., 11, 169, 10.1056/NEJMra1401483 Roca, 2008, Cognitive deficits in multiple sclerosis correlate with changes in fronto-subcortical tracts, Mult. Scler., 14, 364, 10.1177/1352458507084270 Schendan, 2007, Mental rotation and object categorization share a common network of prefrontal and dorsal and ventral regions of posterior cortex, NeuroImage, 35, 1264, 10.1016/j.neuroimage.2007.01.012 Selya, 2012, A practical guide to calculating Cohen's f2, a measure of local effect size, from PROC MIXED, Front. Psychol., 3, 111, 10.3389/fpsyg.2012.00111 Sepúlveda, 2016, Impairment of decision-making in multiple sclerosis: a neuroeconomic approach, Mult. Scler. Houndmills Basingstoke Engl. Simioni, 2008, Preserved decision making ability in early multiple sclerosis, J. Neurol., 255, 1762, 10.1007/s00415-008-0025-5 Trapp, 2008, Multiple sclerosis: an immune or neurodegenerative disorder?, Annu. Rev. Neurosci., 31, 247, 10.1146/annurev.neuro.30.051606.094313 Tzourio-Mazoyer, 2002, Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain, NeuroImage, 15, 273, 10.1006/nimg.2001.0978 Weygandt, 2016, Stress-induced brain activity, brain atrophy, and clinical disability in Multiple Sclerosis, Proc. Natl. Acad. Sci. USA, 113, 13444, 10.1073/pnas.1605829113 Weygandt, 2019, Interactions between neural decision-making circuits predict long-term dietary treatment success in obesity, Neuroimage, 184, 520, 10.1016/j.neuroimage.2018.09.058 Weygandt, 2017, Brain activity, regional gray matter loss, and decision-making in multiple sclerosis, Mult. Scler.