Mạng Nơ-ron và L-kurtosis trong Chẩn đoán Lỗi Vòng Bi Phân Cứng

Meriem Behim1, Leila Merabet1, Saad Salah1
1LSEM, Laboratoire des Systèmes Électromécaniques, Badji Mokhtar University, Annaba, Algeria

Tóm tắt

Mục tiêu chính của bài báo này là tìm ra một phương pháp chính xác để cải thiện việc phát hiện và phân loại lỗi khi xử lý các tín hiệu rung không ổn định. Để phát hiện và phân loại các lỗi của động cơ cảm ứng, một kỹ thuật phân tách gói sóng (WPD) kết hợp với mạng nơ-ron nhân tạo (ANN) được xem xét. Hiệu quả của phương pháp này phụ thuộc vào các đặc tính đã được lựa chọn và chuẩn bị một cách cẩn thận nhằm giúp bộ phân loại hỗ trợ các điều kiện khỏe mạnh của hệ thống được giám sát bằng sự trợ giúp của tín hiệu đo được. Các tập dữ liệu thử nghiệm khác nhau của các vòng bi khỏe mạnh và bị hư hỏng dưới các tốc độ quay khác nhau đã được nghiên cứu để huấn luyện bộ phân loại ANN nhằm chứng minh tính hiệu quả của phương pháp đề xuất. Kết quả cho thấy hiệu suất cao của quy trình này như một phương pháp hiệu quả cho chẩn đoán lỗi vòng bi.

Từ khóa

#phát hiện lỗi #phân loại lỗi #tín hiệu rung không ổn định #mạng nơ-ron nhân tạo #phân tách gói sóng #chẩn đoán lỗi vòng bi.

Tài liệu tham khảo

Thorsen OV, Dalva M (1998) Failure identification and analysis for high voltage induction motors in petrochemical industry. In: Conference record of 1998 IEEE industry applications conference. Thirty-Third IAS Annual Meeting (Cat. No.98CH36242); IEEE: St. Louis, MO, USA, 1998; Vol. 1, pp 291–298. https://doi.org/10.1109/IAS.1998.732309 Bell RN, Heising CR, O’Donnell P, Singh C, Wells SJ (1985) Report of Large Motor Reliability Survey of Industrial and Commercial Installations, Part II. IEEE Trans Ind Appl 21(4):865–872 Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88(6):2297–2301. https://doi.org/10.1073/pnas.88.6.2297 Sassi S, Badri B, Thomas M (2008) Tracking surface degradation of ball bearings by means of new time domain scalar indicators. Int J COMADEM 11(3):36 Adewusi SA, Al-Bedoor BO (2001) Wavelet analysis of vibration signals of an overhang rotor with a propagating transverse crack. J Sound Vib 246(5):777–793. https://doi.org/10.1006/jsvi.2000.3611 Belkacemi B, Saad S, Ghemari Z, Zaamouche F, Khazzane A (2020) Detection of induction motor improper bearing lubrication by discrete wavelet transforms (DWT) decomposition. I2M 19(5):347–354 Shen C, Wang D, Kong F, Tse PW (2013) Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier. Measurement 46(4):1551–1564. https://doi.org/10.1016/j.measurement.2012.12.011 Liu B (2005) Selection of wavelet packet basis for rotating machinery fault diagnosis. J Sound Vib 284(3–5):567–582. https://doi.org/10.1016/j.jsv.2004.06.047 Wang X, Makis V, Yang M (2010) A wavelet approach to fault diagnosis of a gearbox under varying load conditions. J Sound Vib 329(9):1570–1585. https://doi.org/10.1016/j.jsv.2009.11.010 Yu Y, Junsheng C (2006) A roller bearing fault diagnosis method based on EMD energy entropy and ANN. J Sound Vibr 294(1–2):269–277. https://doi.org/10.1016/j.jsv.2005.11.002 Lahouasnia N, Rachedi MF, Drici D, Saad S (2020) Load unbalance detection improvement in three-phase induction machine based on current space vector analysis. J Electr Eng Technol 15(3):1205–1216. https://doi.org/10.1007/s42835-020-00403-y Li Y, Xu M, Wang R, Huang W (2016) A fault diagnosis scheme for rolling bearing based on local mean decomposition and improved multiscale fuzzy entropy. J Sound Vib 360:277–299. https://doi.org/10.1016/j.jsv.2015.09.016 Li Y, Xu M, Wei Y, Huang W (2016) A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree. Measurement 77:80–94. https://doi.org/10.1016/j.measurement.2015.08.034 Dubey R, Agrawal D (2015) Bearing fault classification using ANN-based Hilbert footprint analysis. IET Sci Meas Technol 9(8):1016–1022. https://doi.org/10.1049/iet-smt.2015.0026 Attoui I, Fergani N, Boutasseta N, Oudjani B, Deliou A (2017) A new time-frequency method for identification and classification of ball bearing faults. J Sound Vib 397:241–265. https://doi.org/10.1016/j.jsv.2017.02.041 Gan M, Wang C, Zhu C (2016) Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings. Mech Syst Signal Process 72–73:92–104. https://doi.org/10.1016/j.ymssp.2015.11.014 Anbu S, Thangavelu A, Ashok SD (2019) Fuzzy C-means based clustering and rule formation approach for classification of bearing faults using discrete wavelet transform. Computation 7(4):54. https://doi.org/10.3390/computation7040054 Agrawal P, Jayaswal P (2020) Diagnosis and classifications of bearing faults using artificial neural network and support vector machine. J Inst Eng India Ser C 101(1):61–72. https://doi.org/10.1007/s40032-019-00519-9 Sillitto GP (1951) Interrelations between certain linear systematic statistics of samples from any continuous population. Biometrika 38(3/4):377. https://doi.org/10.2307/2332583 Liu S, Hou S, He K, Yang W (2018) L-kurtosis and its application for fault detection of rolling element bearings. Measurement 116:523–532. https://doi.org/10.1016/j.measurement.2017.11.049 Li Y, Yang Y, Wang X, Liu B, Liang X (2018) Early fault diagnosis of rolling bearings based on hierarchical symbol dynamic entropy and binary tree support vector machine. J Sound Vib 428:72–86. https://doi.org/10.1016/j.jsv.2018.04.036 Attoui I, Oudjani B, Boutasseta N, Fergani N, Bouakkaz M-S, Bouraiou A (2020) Novel predictive features using a wrapper model for rolling bearing fault diagnosis based on vibration signal analysis. Int J Adv Manuf Technol 106(7–8):3409–3435. https://doi.org/10.1007/s00170-019-04729-4 Gharesi N, Arefi MM, Razavi-Far R, Zarei J, Yin S (2020) A neuro-wavelet based approach for diagnosing bearing defects. Adv Eng Inform 46:101172. https://doi.org/10.1016/j.aei.2020.101172 Wen X, Lu G, Liu J, Yan P (2020) Graph modeling of singular values for early fault detection and diagnosis of rolling element bearings. Mech Syst Signal Process 145:106956. https://doi.org/10.1016/j.ymssp.2020.106956 Chen Z, Mauricio A, Li W, Gryllias K (2020) A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks. Mech Syst Signal Process 140:106683. https://doi.org/10.1016/j.ymssp.2020.106683 Minhas AS, Kankar PK, Kumar N, Singh S (2021) Bearing fault detection and recognition methodology based on weighted multiscale entropy approach. Mech Syst Signal Process 147:107073. https://doi.org/10.1016/j.ymssp.2020.107073 Sadeghian A, Ye Z, Wu B (2009) Online detection of broken rotor bars in induction motors by wavelet packet decomposition and artificial neural networks. IEEE Trans Instrum Meas 58(7):2253–2263. https://doi.org/10.1109/TIM.2009.2013743 Abu-Rub, H, Iqbal A, Moin Ahmed S, Guzinski J, Adamowicz M, Rahiminia M (2011) Rotor broken bar diagnostics in induction motor drive using wavelet packet transform and ANFIS classification. In: 2011 IEEE International Electric Machines & Drives Conference (IEMDC); IEEE: Niagara Falls, ON, Canada, 2011; pp 365–370. https://doi.org/10.1109/IEMDC.2011.5994622 Bin GF, Gao JJ, Li XJ, Dhillon BS (2012) Early fault diagnosis of rotating machinery based on wavelet packets—empirical mode decomposition feature extraction and neural network. Mech Syst Signal Process 27:696–711. https://doi.org/10.1016/j.ymssp.2011.08.002 Hoskingt JRM, Research Division, I L-MomentsA: Nalysis and estimation of distributionus singlinear combinations of order statistics. 22. Castejón C, Lara O, García-Prada JC (2010) Automated diagnosis of rolling bearings using MRA and neural networks. Mech Syst Signal Process 24(1):289–299. https://doi.org/10.1016/j.ymssp.2009.06.004 Zhu H, He Z, Wei J, Wang J, Zhou H (2021) Bearing fault feature extraction and fault diagnosis method based on feature fusion. Sensors 21(7):2524. https://doi.org/10.3390/s21072524 Goyal D, Choudhary A, Sandhu JK et al (2022) An intelligent self-adaptive bearing fault diagnosis approach based on improved local mean decomposition. Int J Interact Des Manuf. https://doi.org/10.1007/s12008-022-01001-0 Ravikumar KN, Aralikatti SS, Kumar H et al (2022) Fault diagnosis of antifriction bearing in internal combustion engine gearbox using data mining techniques. Int J Syst Assur Eng Manag 13:1121–1134. https://doi.org/10.1007/s13198-021-01407-1 Gundewar SK, Kane PV (2022) Rolling element bearing fault diagnosis using supervised learning methods- artificial neural network and discriminant classifier. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-022-01757-4