Neural Network Modeling for Estimation of Scour Depth Around Bridge Piers

T.L. Lee1, Dong‐Sheng Jeng2, G.H. Zhang3, Jindui Hong4
1Department of Construction Technology, Leader University, Tainan, China
2School of Civil Engineering, The University of Sydney, Australia
3Department of Resource and Environment, Leader University, Tainan, China
4Department of Civil Engineering, National Chung Hsing University, Taichung, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

LAURSEN E. M. and TOCH A. Scour around bridge piers and abutments[J]. Iowa Highway Research Board, 1956, 4: 60.

SHEN H.W. River mechanics[M]. New York, USA: John Wiley and Sons, 1971, 2: 23.

HANCU S. Sur le calcul des affouillements locaux dams la zone des piles des ponts[C]. Proc. 14th IAHR Congress. Paris, France, 1971, 3: 299–313.

BREUSERS H. N. C., NICOLLET G. and SHEN H. W. Local scour around cylindrical piers[J] J. Hydr. Res., 1977, 15(3): 211–252.

MELVILLE B. W. and SUTHERLAND A. J. Design method for local scour at bridge piers[J]. J. Hydr. Eng., 1988, 114(10): 1210–1226.

DOT U. S. Evaluating scour at bridges, hydraulic engineering circular 18[J]. Federal highway administration, 1993, 2: 1–4.

MELVILLE B. W. and CHIEW Y. M. Time scale for local scour depth at bridge piers[J]. J. Hydr. Eng., 1999, 125(1): 59–65.

SUMER B. M., FREDS ØE J. and JENSEN K. A note on spanwise correlation on a freely vibrating cylinder in oscillatory flow. Journal of Fluids and Structures. 1994, 8(3): 231–238.

SUMER B. M. and FREDSØE J. Hydrodynamics around cylindrical structures [M]. Singapore: World Scientific, 1997, 548.

RUMELHART D. E., HINTON G. E. and WILLIAMS R. J. Learning internal representation by error propagation, parallel distributed processing, V. 1[M]. Cambridge, Mass: MIT Press, 1986, 318–362.

FRENCH M. N., KRAJEWSKI W. F., CUYKENDALL R. R. Rainfall forecasting in space and time using a neural network [J]. J. of Hydrology, 1992, 137: 1–31.

MASE H. Evaluation of artificial armour layer stability by neural network method[C]. Proc. 26th Congress of IAHR, London, UK, 1995, 341–346.

CAMPOLO M., ANDREUSSI P., SOLDATI A. River flood forecasting with a neural network model[J]. Water Resources Res., 1997, 35(4), 1191–1197.

TSAI C. P., LEE T. L. Back-propagation neural network in tidal-level forecasting[J]. J. of Waterw Port Coastal and Ocean Eng., 1999, 12(4): 195–202.

LEE T. L., JENG D. S. Application of artificial neural networks in tide forecasting[J]. Ocean Eng., 2002, 29(9): 1003–1022.

LEE T. L. Back-propagation neural network for the long-term tidal predictions[J]. Ocean Eng., 2004, 31(2): 225–238.

LEE T. L., JENG D. S., LIN C. et al. Assessment of earthquake-induced liquefaction by artificial neural networks[C]. The 9th International Conference for Computing in Civil and Building Engineering. Taipei, China, 2002, 55–60.

MAKARYNSKYY O., MAKARYNSKA D., KUHN M. et al. Predicting sea level variations with artificial neural networks at hillarys boat harbour[J]. Coastal and Shelf Science, 2004, 61(2): 351–360.

MAKARYNSKYY O., PIRES-SILVA A. A., MAKARYNSKA D. et al. Artificial neural networks in wave predictions at the west coast of Portugal[J]. Computers and Geosciences, 2005, 31(4): 415–424.

LEE T. L. Neural network prediction of a storm surge[J]. Ocean Engineering, 2006, 33(3–4): 483–494.

SHEN H. W., SCHNEIDER V. R. and KARAKI S. Local scour around bridge piers[J]. J. Hydr. Eng., 1969, 95(6): 1919–1940.

BAKER C. J. Theoretical approach to predication of local scour around bridge piers[J]. J. Hydr. Res., 1980, 18(1): 1–12.

YANMAZ A. M. and ALTINBILEK H. D. Study of time-dependent local scour bridge piers[J]. J. Hydr. Eng., 1991, 117(10): 1247–1268.

KOTHYARI U. C., GARDE R. J. and RANGE RAJU K. G. Temporal variation of scour around circular bridge piers[J]. J. Hydr. Eng., 1992, 118(8): 1091–1106.

COLEMAN N. L. Analyzing laboratory measurements of scour at cylindrical piers in sand beds[J]. Proc. 14th IAHR Congress, Paris, France, 1971, 3: 307–313.

ETTEMA R. E. Scour at bridge piers[R]. Rep. No. 216, Auckland, New Zealand: University of Auckland, 1980.

MELVILLE B. W. Pier and abutment scour: integrated approach[J]. Journal of Hydraulic Engineering, ASCE, 1997, 123(2): 125–136.

ETTEMA R. E., MELVILLE B.W. and BARKDOLL B. Closure. A scale effect in pier-scour experiments[J]. Journal of Hydraulic Engineering, ASCE, 1999, 125(8): 895–896.

OLSEN N. R. B. and MELAAEN M. C. Three-dimensional calculation of scour around cylinders[J]. Journal of Hydraulic Engineering, ASCE, 1993, 119(9): 1048–1054.

DOU X. Numerical simulation of three-dimensional flow field and local scour at bridge crossings[D]. Ph. D. Thesis Oxford, MS USA: University of Mississippi, 1997.

RICHARDSON J. E. and PANCHANG V. G. Three-dimensional simulation of scour-inducing flow at bridge piers[J]. Journal of Hydraulic Engineering, ASCE, 1998, 124: 530–540.

ROULUND A., SUMER B. M., FREDSOE J. et al. 3D mathematical modeling of scour around a circular pile in current[C]. Proc. 7th Int’l Symposium on River Sedimentation and 2nd Int’l Symposium on Environmental Hydraulics ′98. Hong Kong, China, 1999, 131–138.

TSENG M. H., YEN C. L. and SONG C. S. Computation of three dimensional flow around square and circular piers[J]. International Journal for Numerical Methods in Fluids., 2000, 33: 695–710.

FAUSETT L. Fundamentals of neural networks, architectures, algorithms, and applications, upper saddle river[M]. New Jersey, USA: Prentice-Hall, 1994, 462.

BISHOP C. M. Neural networks for pattern recognition[M]. Oxford: Clarendon Press, 1995, 504.

JACOBS R. A. Increased rates of convergence through learning rate adaptation[J]. Neural Network, 1988, 1: 295–307.