Neural Models for Predicting Hole Diameters in Drilling Processes

Procedia CIRP - Tập 12 - Trang 49-54 - 2013
F.C. Neto1, T.M. Gerônimo1, C.E.D. Cruz1, P.R. Aguiar1, E.E.C. Bianchi1
1UNESP - Universidade Estadual Paulista - Faculdade de Engenharia, Av. Eng. Luiz Edmundo C. Coube 14-01, Bauru 17033-360, Brazil

Tài liệu tham khảo

Kamen, 1999, 230 Konig, 2002, 409 Huang, 1994, Artificial Neural Networks in Manufacturing: Concepts, Applications, and Perspectives, IEEE Trans, Comp. Pack. Manuf. Tech. – Part A, 17, 2 Sanjay, 2006, A study of surface roughness in drilling using mathematical analysis and neural networks Hundt, 1997, Model-based AE monitoring of the grinding process, Annals of the CIRP, 45, 243, 10.1016/S0007-8506(07)60817-8 Aguiar, P. R., Bianchi, E. C., Oliveira, J. F. G. 2002. A method for burning detection in grinding process using acoustic emission and effective electrical power signal, CIRP Journal of Manufacturing Systems, Paris, 31, p. 253. Strenkowski a, 2004, An analytical finite element technique for predicting thrust force and torque in drilling, International Journal of Machine Tools & Manufacture, 44, 1413, 10.1016/j.ijmachtools.2004.01.005 Drozda, T. J., Wick, C. (Ed.), 1983. “Milling. In: Tool and manufacturing engineers handbook: machining” (4 ed.) Michigan: SME, p. 10. Batzer, 1998, Chip morphology and hole surface texture in the drilling of cast Aluminum alloys, Journal of Materials Processing Technology, 79, 72, 10.1016/S0924-0136(97)00324-5 Dotto, 2006, Automatic system for thermal damage detection in manufacturing process with internet monitoring,, Journal of Brazilian Society of Mechanical Science & Engineering, 28, 153, 10.1590/S1678-58782006000200004 Spadotto, M. M., Aguiar, P. R., Souza, C. C. P., Bianchi, E. C., Nunes, A. N. 2008. “Classification of burn degrees in grinding by neural nets,” The IASTED International Conference on Artificial Intelligence and Applications, AIA 2008, p. 175, ISBN 978-0-88986-709-3, Innsbruck, Austria, February 11-13. Chen, 2001 Tang, 2001 Rangwala, 1990, Sensor integration using neural networks for intelligent tool condition monitoring, J. Eng. Ind Trans., 219, 10.1115/1.2899578 Purushotham, 1994, A back-propagation algorithm applied to tool wear monitoring, Int. J. Mach. Tools Manuf., 34, 625, 10.1016/0890-6955(94)90047-7 Nandi, 2005, FBF-NN-based modelling of cylindrical plunge grinding process using GA, Journal of Materials Processing Technology,, 162-163, 655, 10.1016/j.jmatprotec.2005.02.080 Echanobe, 2008, An adaptive neuro- fuzzy system for efficient implementations, Information Sciences, 178, 2150