Neural Models for Predicting Hole Diameters in Drilling Processes
Tài liệu tham khảo
Kamen, 1999, 230
Konig, 2002, 409
Huang, 1994, Artificial Neural Networks in Manufacturing: Concepts, Applications, and Perspectives, IEEE Trans, Comp. Pack. Manuf. Tech. – Part A, 17, 2
Sanjay, 2006, A study of surface roughness in drilling using mathematical analysis and neural networks
Hundt, 1997, Model-based AE monitoring of the grinding process, Annals of the CIRP, 45, 243, 10.1016/S0007-8506(07)60817-8
Aguiar, P. R., Bianchi, E. C., Oliveira, J. F. G. 2002. A method for burning detection in grinding process using acoustic emission and effective electrical power signal, CIRP Journal of Manufacturing Systems, Paris, 31, p. 253.
Strenkowski a, 2004, An analytical finite element technique for predicting thrust force and torque in drilling, International Journal of Machine Tools & Manufacture, 44, 1413, 10.1016/j.ijmachtools.2004.01.005
Drozda, T. J., Wick, C. (Ed.), 1983. “Milling. In: Tool and manufacturing engineers handbook: machining” (4 ed.) Michigan: SME, p. 10.
Batzer, 1998, Chip morphology and hole surface texture in the drilling of cast Aluminum alloys, Journal of Materials Processing Technology, 79, 72, 10.1016/S0924-0136(97)00324-5
Dotto, 2006, Automatic system for thermal damage detection in manufacturing process with internet monitoring,, Journal of Brazilian Society of Mechanical Science & Engineering, 28, 153, 10.1590/S1678-58782006000200004
Spadotto, M. M., Aguiar, P. R., Souza, C. C. P., Bianchi, E. C., Nunes, A. N. 2008. “Classification of burn degrees in grinding by neural nets,” The IASTED International Conference on Artificial Intelligence and Applications, AIA 2008, p. 175, ISBN 978-0-88986-709-3, Innsbruck, Austria, February 11-13.
Chen, 2001
Tang, 2001
Rangwala, 1990, Sensor integration using neural networks for intelligent tool condition monitoring, J. Eng. Ind Trans., 219, 10.1115/1.2899578
Purushotham, 1994, A back-propagation algorithm applied to tool wear monitoring, Int. J. Mach. Tools Manuf., 34, 625, 10.1016/0890-6955(94)90047-7
Nandi, 2005, FBF-NN-based modelling of cylindrical plunge grinding process using GA, Journal of Materials Processing Technology,, 162-163, 655, 10.1016/j.jmatprotec.2005.02.080
Echanobe, 2008, An adaptive neuro- fuzzy system for efficient implementations, Information Sciences, 178, 2150