Networks beyond pairwise interactions: Structure and dynamics
Tài liệu tham khảo
Anderson, 1972, More is different, Science, 177, 393, 10.1126/science.177.4047.393
Barabási, 2011, The network takeover, Nat. Phys., 8, 14, 10.1038/nphys2188
Vespignani, 2012, Modelling dynamical processes in complex socio-technical systems, Nat. Phys., 8, 32, 10.1038/nphys2160
Boguna, 2020
Watts, 1998, Collective dynamics of ‘small-world’ networks, Nature, 393, 440, 10.1038/30918
Barabási, 1999, Emergence of scaling in random networks, Science, 286, 509, 10.1126/science.286.5439.509
Bollobás, 2001
Lovász, 2012
Albert, 2002, Statistical mechanics of complex networks, Rev. Modern Phys., 74, 47, 10.1103/RevModPhys.74.47
Cimini, 2019, The statistical physics of real-world networks, Nat. Rev. Phys., 1, 58, 10.1038/s42254-018-0002-6
Dorogovtsev, 2002, Evolution of networks, Adv. Phys., 51, 1079, 10.1080/00018730110112519
Newman, 2003, The structure and function of complex networks, SIAM Rev., 45, 167, 10.1137/S003614450342480
Boccaletti, 2006, Complex networks: Structure and dynamics, Phys. Rep., 424, 175, 10.1016/j.physrep.2005.10.009
Caldarelli, 2007
Barrat, 2008
Newman, 2010
Estrada, 2011
Barabási, 2016
Latora, 2017
Menczer, 2020
Butts, 2009, Revisiting the foundations of network analysis, Science, 325, 414, 10.1126/science.1171022
Holme, 2012, Temporal networks, Phys. Rep., 519, 97, 10.1016/j.physrep.2012.03.001
Boccaletti, 2014, The structure and dynamics of multilayer networks, Phys. Rep., 544, 1, 10.1016/j.physrep.2014.07.001
Benson, 2016, Higher-order organization of complex networks, Science, 353, 163, 10.1126/science.aad9029
Petri, 2014, Homological scaffolds of brain functional networks, J. R. Soc. Interface, 11, 20140873, 10.1098/rsif.2014.0873
Sizemore, 2018, Cliques and cavities in the human connectome, J. Comput. Neurosci., 44, 115, 10.1007/s10827-017-0672-6
Grilli, 2017, Higher-order interactions stabilize dynamics in competitive network models, Nature, 548, 210, 10.1038/nature23273
Sanchez-Gorostiaga, 2018, High-order interactions dominate the functional landscape of microbial consortia, bioRxiv, 333534
Ganmor, 2011, Sparse low-order interaction network underlies a highly correlated and learnable neural population code, Proc. Natl. Acad. Sci. USA, 108, 9679, 10.1073/pnas.1019641108
Levine, 2017, Beyond pairwise mechanisms of species coexistence in complex communities, Nature, 546, 56, 10.1038/nature22898
Benson, 2018, Simplicial closure and higher-order link prediction, Proc. Natl. Acad. Sci. USA, 115, E11221, 10.1073/pnas.1800683115
Centola, 2010, The spread of behavior in an online social network experiment, Science, 329, 1194, 10.1126/science.1185231
Newman, 2001, Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64, 026118, 10.1103/PhysRevE.64.026118
Atkin, 1972, From cohomology in physics to Q-connectivity in social science, Int. J. Man-Mach. Stud., 4, 139, 10.1016/S0020-7373(72)80029-4
Berge, 1973
Atkin, 1974
Kivelä, 2014, Multilayer networks, J Comp. Netw., 2, 203, 10.1093/comnet/cnu016
De Domenico, 2016, The physics of spreading processes in multilayer networks, Nat. Phys., 12, 901, 10.1038/nphys3865
Battiston, 2017, The new challenges of multiplex networks: Measures and models, Eur. Phys. J. Spec. Top., 226, 401, 10.1140/epjst/e2016-60274-8
Bianconi, 2018
Aleta, 2019, Multilayer networks in a nutshell, Annu. Rev. Condens. Matter Phys., 10, 45, 10.1146/annurev-conmatphys-031218-013259
Holme, 2013
Holme, 2015, Modern temporal network theory: A colloquium, Eur. Phys. J. B, 88, 234, 10.1140/epjb/e2015-60657-4
Lambiotte, 2019, From networks to optimal higher-order models of complex systems, Nat. Phys., 1
Bondy, 1976
Alon, 2003, Biological networks: The tinkerer as an engineer, Science, 301, 1866, 10.1126/science.1089072
Kashtan, 2005, Spontaneous evolution of modularity and network motifs, Proc. Natl. Acad. Sci. USA, 102, 13773, 10.1073/pnas.0503610102
Montoya, 2006, Ecological networks and their fragility, Nature, 442, 259, 10.1038/nature04927
Borgatti, 2009, Network analysis in the social sciences, Science, 323, 892, 10.1126/science.1165821
McPherson, 2001, Birds of a feather: Homophily in social networks, Annu. Rev. Sociol., 27, 415, 10.1146/annurev.soc.27.1.415
Gao, 2012, Networks formed from interdependent networks, Nat. Phys., 8, 40, 10.1038/nphys2180
Buldyrev, 2010, Catastrophic cascade of failures in interdependent networks, Nature, 464, 1025, 10.1038/nature08932
Bullmore, 2009, Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci., 10, 186, 10.1038/nrn2575
Bassett, 2017, Network neuroscience, Nat. Neurosci., 20, 353, 10.1038/nn.4502
Medaglia, 2015, Cognitive network neuroscience, J. Cogn. Neurosci., 27, 1471, 10.1162/jocn_a_00810
Boguñá, 2014, Cosmological networks, New J. Phys., 16, 093031, 10.1088/1367-2630/16/9/093031
Fortunato, 2010, Community detection in graphs, Phys. Rep., 486, 75, 10.1016/j.physrep.2009.11.002
Palla, 2005, Uncovering the overlapping community structure of complex networks in nature and society, Nature, 435, 814, 10.1038/nature03607
Karrer, 2011, Stochastic blockmodels and community structure in networks, Phys. Rev. E, 83, 016107, 10.1103/PhysRevE.83.016107
Lancichinetti, 2011, Limits of modularity maximization in community detection, Phys. Rev. E, 84, 066122, 10.1103/PhysRevE.84.066122
Abbe, 2015, Community detection in general stochastic block models: Fundamental limits and efficient algorithms for recovery, 670
Lancichinetti, 2008, Benchmark graphs for testing community detection algorithms, Phys. Rev. E, 78, 046110, 10.1103/PhysRevE.78.046110
Guillaume, 2004, Bipartite structure of all complex networks, Inf. Process Lett., 90, 215, 10.1016/j.ipl.2004.03.007
Guillaume, 2006, Bipartite graphs as models of complex networks, Physica A, 371, 795, 10.1016/j.physa.2006.04.047
Wasserman, 1994
Newman, 2002, Random graph models of social networks, Proc. Natl. Acad. Sci. USA, 99, 2566, 10.1073/pnas.012582999
Guimerà, 2007, Module identification in bipartite and directed networks, Phys. Rev. E, 76, 036102, 10.1103/PhysRevE.76.036102
Zhou, 2007, Bipartite network projection and personal recommendation, Phys. Rev. E, 76, 046115, 10.1103/PhysRevE.76.046115
Zweig, 2011, A systematic approach to the one-mode projection of bipartite graphs, Soc. Netw. Anal. Min., 1, 187, 10.1007/s13278-011-0021-0
Schaub, 2018, Flow smoothing and denoising: Graph signal processing in the edge-space, 735
Milo, 2002, Network motifs: Simple building blocks of complex networks, Science, 298, 824, 10.1126/science.298.5594.824
Alon, 2007, Network motifs: Theory and experimental approaches, Nat. Rev. Genet., 8, 450, 10.1038/nrg2102
Morgan, 2018, Low-dimensional morphospace of topological motifs in human fMRI brain networks, Netw. Neurosci., 2, 285, 10.1162/netn_a_00038
Avena-Koenigsberger, 2015, Network morphospace, J. R. Soc. Interface, 12, 20140881, 10.1098/rsif.2014.0881
Shen-Orr, 2002, Network motifs in the transcriptional regulation network of Escherichia coli, Nat. Genet., 31, 64, 10.1038/ng881
Fowler, 2009, Model of genetic variation in human social networks, Proc. Natl. Acad. Sci. USA, 106, 1720, 10.1073/pnas.0806746106
Paranjape, 2017, Motifs in temporal networks, 601
Kovanen, 2011, Temporal motifs in time-dependent networks, J. Stat. Mech. Theory Exp., 2011, P11005, 10.1088/1742-5468/2011/11/P11005
Mahadevan, 2006, Systematic topology analysis and generation using degree correlations, 135
Orsini, 2015, Quantifying randomness in real networks, Nature Commun., 6, 8627, 10.1038/ncomms9627
Derényi, 2005, Clique percolation in random networks, Phys. Rev. Lett., 94, 160202, 10.1103/PhysRevLett.94.160202
Dunbar, 1995, Social networks, support cliques, and kinship, Hum. Nat., 6, 273, 10.1007/BF02734142
Provan, 1998, Networks within networks: Service link overlap, organizational cliques, and network effectiveness, Acad. Manage. J., 41, 453, 10.2307/257084
Hatcher, 2002
Horak, 2013, Spectra of combinatorial Laplace operators on simplicial complexes, Adv. Math., 244, 303, 10.1016/j.aim.2013.05.007
Muhammad, 2006, Control using higher order Laplacians in network topologies, 1024
Costa, 2016, Random simplicial complexes, 129
Bianconi, 2016, Network geometry with flavor: From complexity to quantum geometry, Phys. Rev. E, 93, 032315, 10.1103/PhysRevE.93.032315
Ghrist, 2014
Carlsson, 2009, Topology and data, Bull. Amer. Math. Soc., 46, 255, 10.1090/S0273-0979-09-01249-X
Patania, 2017, Topological analysis of data, EPJ Data Sci., 6, 7, 10.1140/epjds/s13688-017-0104-x
Expert, 2019, Editorial: Topological neuroscience, Netw. Neurosci., 3, 653, 10.1162/netn_e_00096
Higuchi, 1999
Louis, 2015, Hypergraph Markov operators, eigenvalues and approximation algorithms, 713
Chan, 2018, Spectral properties of hypergraph Laplacian and approximation algorithms, J. ACM JACM, 65, 15
Chan, 2019, Generalizing the hypergraph Laplacian via a diffusion process with mediators, Theoret. Comput. Sci.
Ghoshal, 2009, Random hypergraphs and their applications, Phys. Rev. E, 79, 066118, 10.1103/PhysRevE.79.066118
Kumar, 2018
Chodrow, 2020, Annotated hypergraphs: Models and applications, Appl. Netw. Sci., 5, 9, 10.1007/s41109-020-0252-y
Torres, 2020
Estrada, 2005
Kamiński, 2019, Clustering via hypergraph modularity, PLoS One, 14, 10.1371/journal.pone.0224307
Zhou, 2007, Learning with hypergraphs: Clustering, classification, and embedding, 1601
Chodrow, 2019
Rodriguez, 2003, On the Laplacian spectrum and walk-regular hypergraphs, Linear Multilinear Algebra, 51, 285, 10.1080/0308108031000084374
A. Bellaachia, M. Al-Dhelaan, Random walks in hypergraph, in: Proceedings of the 2013 International Conference on Applied Mathematics and Computational Methods, Venice Italy, 2013, pp. 187–194.
Avin, 2010, Radio cover time in hyper-graphs, 3
Young, 2017, Construction of and efficient sampling from the simplicial configuration model, Phys. Rev. E, 96, 032312, 10.1103/PhysRevE.96.032312
Goldberg, 2002, Combinatorial Laplacians of simplicial complexes, Sr. Thesis Bard Coll.
Maletić, 2008, Simplicial complexes of networks and their statistical properties, 568
Duval, 2002, Shifted simplicial complexes are Laplacian integral, Trans. Amer. Math. Soc., 354, 4313, 10.1090/S0002-9947-02-03082-9
Serrano, 2019
Estrada, 2018, Centralities in simplicial complexes. Applications to protein interaction networks, J. Theoret. Biol., 438, 46, 10.1016/j.jtbi.2017.11.003
Courtney, 2016, Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes, Phys. Rev. E, 93, 062311, 10.1103/PhysRevE.93.062311
Patania, 2017, The shape of collaborations, EPJ Data Sci., 6, 18, 10.1140/epjds/s13688-017-0114-8
Kapoor, 2013, Weighted node degree centrality for hypergraphs, 152
Jiang, 2007, Spatial topology and its structural analysis based on the concept of simplicial complex, Trans. GIS, 11, 943, 10.1111/j.1467-9671.2007.01073.x
Serrano, 2019
Lu, 2011, High-ordered random walks and generalized Laplacians on hypergraphs, 14
Estrada, 2006, Subgraph centrality and clustering in complex hyper-networks, Physica A, 364, 581, 10.1016/j.physa.2005.12.002
Aksoy, 2020, Hypernetwork science via high-order hypergraph walks, EPJ Data Science, 9, 1, 10.1140/epjds/s13688-020-00231-0
Bonacich, 1972, Factoring and weighting approaches to status scores and clique identification, J. Math. Sociol., 2, 113, 10.1080/0022250X.1972.9989806
Newman, 2006, Modularity and community structure in networks, Proc. Natl. Acad. Sci. USA, 103, 8577, 10.1073/pnas.0601602103
Langville, 2004, Deeper inside pagerank, Internet Math., 1, 335, 10.1080/15427951.2004.10129091
Fletcher, 2018, From structure to activity: Using centrality measures to predict neuronal activity, Int. J. Neural Syst., 28, 1750013, 10.1142/S0129065717500137
Bonacich, 1991, Simultaneous group and individual centralities, Soc. Netw., 13, 155, 10.1016/0378-8733(91)90018-O
Bonacich, 2004, Hyper-edges and multidimensional centrality, Soc. Netw., 26, 189, 10.1016/j.socnet.2004.01.001
Benson, 2019, Three hypergraph eigenvector centralities, SIAM J. Math. Data Sci., 1, 293, 10.1137/18M1203031
Qi, 2017
Granovetter, 1977, The strength of weak ties, 347
Opsahl, 2013, Triadic closure in two-mode networks: Redefining the global and local clustering coefficients, Soc. Netw., 35, 159, 10.1016/j.socnet.2011.07.001
Borgatti, 1997, Network analysis of 2-mode data, Soc. Netw., 19, 243, 10.1016/S0378-8733(96)00301-2
Kartun-Giles, 2019, Beyond the clustering coefficient: A topological analysis of node neighbourhoods in complex networks, Chaos Solitons Fractals X, 1, 100004, 10.1016/j.csfx.2019.100004
Yin, 2017, Local higher-order graph clustering, 555
Edelsbrunner, 2014
Ghrist, 2008, Barcodes: The persistent topology of data, Bull. Amer. Math. Soc., 45, 61, 10.1090/S0273-0979-07-01191-3
Verri, 1993, On the use of size functions for shape analysis, Biol. Cybernet., 70, 99, 10.1007/BF00200823
Cagliari, 2001, Size functions from a categorical viewpoint, Acta Appl. Math., 67, 225, 10.1023/A:1011923819754
Edelsbrunner, 2000, Topological persistence and simplification, 454
Zomorodian, 2005, Computing persistent homology, Discrete Comput. Geom., 33, 249, 10.1007/s00454-004-1146-y
Feng, 2019
Carlsson, 2010, Zigzag persistence, Found. Comput. Math., 10, 367, 10.1007/s10208-010-9066-0
Carlsson, 2009, The theory of multidimensional persistence, Discrete Comput. Geom., 42, 71, 10.1007/s00454-009-9176-0
Edelsbrunner, 2017, Persistent homology, 637
Otter, 2017, A roadmap for the computation of persistent homology, EPJ Data Sci., 6, 17, 10.1140/epjds/s13688-017-0109-5
Muldoon, 1993, Topology from time series, Physica D, 65, 1, 10.1016/0167-2789(92)00026-U
Adler, 2017
Pranav, 2019, Topology and geometry of Gaussian random fields I: On Betti numbers, Euler characteristic, and Minkowski functionals, Mon. Not. R. Astron. Soc., 485, 4167, 10.1093/mnras/stz541
Maletić, 2012, Combinatorial Laplacian and entropy of simplicial complexes associated with complex networks, Eur. Phys. J. ST, 77, 10.1140/epjst/e2012-01655-6
Lim, 2015, Hodge Laplacians on graphs, Proc. Symp. Appl. Math.
Parzanchevski, 2017, Simplicial complexes: Spectrum, homology and random walks, Random Struct. Algorithms, 50, 225, 10.1002/rsa.20657
Schaub, 2020, Random walks on simplicial complexes and the normalized Hodge Laplacian, SIAM Rev., 62, 353, 10.1137/18M1201019
Rodriguez, 2009, Laplacian eigenvalues and partition problems in hypergraphs, Appl. Math. Lett., 22, 916, 10.1016/j.aml.2008.07.020
Chung, 1993, The Laplacian of a hypergraph, Expand. Graphs DIMACS Ser., 21, 10.1090/dimacs/010/03
Saito, 2018, Hypergraph p-Laplacian: A differential geometry view
Cooper, 2012, Spectra of uniform hypergraphs, Linear Algebra Appl., 436, 3268, 10.1016/j.laa.2011.11.018
Hu, 2015, The Laplacian of a uniform hypergraph, J. Comb. Optim., 29, 331, 10.1007/s10878-013-9596-x
Li, 2018, Submodular hypergraphs: P-Laplacians, cheeger inequalities and spectral clustering, 3014
Lucas, 2020
Krioukov, 2013, Duality between equilibrium and growing networks, Phys. Rev. E, 88, 022808, 10.1103/PhysRevE.88.022808
Coolen, 2017
Bianconi, 2003, Number of loops of size h in growing scale-free networks, Phys. Rev. Lett., 90, 078701, 10.1103/PhysRevLett.90.078701
Serrano, 2005, Tuning clustering in random networks with arbitrary degree distributions, Phys. Rev. E, 72, 036133, 10.1103/PhysRevE.72.036133
Bollobás, 1976, Cliques in random graphs, 419
Fosdick, 2018, Configuring random graph models with fixed degree sequences, SIAM Rev., 60, 315, 10.1137/16M1087175
Diamond, 1975, Assembly of species communities, Ecol. Evol. Commun., 342
Connor, 1979, The assembly of species communities: Chance or competition?, Ecology, 60, 1132, 10.2307/1936961
Gail, 1977, Counting the number of r× c contingency tables with fixed margins, J. Am. Stat. Assoc., 72, 859, 10.1080/01621459.1977.10479971
Verbeek, 1985, A survey of algorithms for exact distributions of test statistics in r×c contingency tables with fixed margins, Comput. Statist. Data Anal., 3, 159, 10.1016/0167-9473(85)90080-5
Saracco, 2015, Randomizing bipartite networks: The case of the World Trade Web, Sci. Rep., 5, 10595, 10.1038/srep10595
Payrató-Borràs, 2019, Breaking the spell of nestedness: The entropic origin of nestedness in mutualistic systems, Phys. Rev. X, 9, 031024
Kitsak, 2011, Hidden variables in bipartite networks, Phys. Rev. E, 84, 026114, 10.1103/PhysRevE.84.026114
Boroojeni, 2017, Generating bipartite networks with a prescribed joint degree distribution, J. Complex Netw., 5, 839, 10.1093/comnet/cnx014
Söderberg, 2002, General formalism for inhomogeneous random graphs, Phys. Rev. E, 66, 066121, 10.1103/PhysRevE.66.066121
Allard, 2009, Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics, Phys. Rev. E, 79, 036113, 10.1103/PhysRevE.79.036113
Fu, 2019, Modeling and analysis of tagging networks in stack exchange communities, J. Complex Netw., 10.1093/comnet/cnz045
Wasserman, 1996, Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp, Psychometrika, 61, 401, 10.1007/BF02294547
Snijders, 2006, New specifications for exponential random graph models, Sociol. Methodol., 36, 99, 10.1111/j.1467-9531.2006.00176.x
Frank, 1986, Markov graphs, J. Amer. Statist. Assoc., 81, 832, 10.1080/01621459.1986.10478342
Holland, 1981, An exponential family of probability distributions for directed graphs, J. Amer. Statist. Assoc., 76, 33, 10.1080/01621459.1981.10477598
Latapy, 2008, Basic notions for the analysis of large two-mode networks, Soc Netw., 30, 31, 10.1016/j.socnet.2007.04.006
Iacobucci, 1990, Social networks with two sets of actors, Psychometrika, 55, 707, 10.1007/BF02294618
Skvoretz, 1999, Logit models for affiliation networks, Sociol. Methodol., 29, 253, 10.1111/0081-1750.00066
Robins, 2004, Small worlds among interlocking directors: Network structure and distance in bipartite graphs, Comput. Math. Organ. Theory, 10, 69, 10.1023/B:CMOT.0000032580.12184.c0
Agneessens, 2004, Choices of theatre events: P* models for affiliation networks with attributes, Metod. Zv., 1, 419
Strauss, 1986, On a general class of models for interaction, SIAM Rev., 28, 513, 10.1137/1028156
Handcock, 2003, Statistical models for social networks: inference and degeneracy, 229
Fischer, 2015, Sampling motif-constrained ensembles of networks, Phys. Rev. Lett., 115, 188701, 10.1103/PhysRevLett.115.188701
Wang, 2009, Exponential random graph (P*) models for affiliation networks, Soc. Netw., 31, 12, 10.1016/j.socnet.2008.08.002
Wang, 2013, Exponential random graph model specifications for bipartite networks—A dependence hierarchy, Soc. Netw., 35, 211, 10.1016/j.socnet.2011.12.004
Robins, 2007, An introduction to exponential random graph (P*) models for social networks, Soc. Netw., 29, 173, 10.1016/j.socnet.2006.08.002
Smith, 2012, Macrostructure from microstructure: Generating whole systems from ego networks, Sociol. Methodol., 42, 155, 10.1177/0081175012455628
Jasny, 2012, Baseline models for two-mode social network data, Policy Stud. J., 40, 458, 10.1111/j.1541-0072.2012.00461.x
Faust, 2002, Scaling and statistical models for affiliation networks: Patterns of participation among Soviet politicians during the Brezhnev era, Soc Netw., 24, 231, 10.1016/S0378-8733(02)00005-9
Snijders, 2002, Markov chain Monte Carlo estimation of exponential random graph models, J. Soc. Struct., 3, 1
Shalizi, 2013, Consistency under sampling of exponential random graph models, Ann. Statist., 41, 508, 10.1214/12-AOS1044
Crane, 2018
Young, 2018, Universality of the stochastic block model, Phys. Rev. E, 98, 032309, 10.1103/PhysRevE.98.032309
Newman, 2012, Communities, modules and large-scale structure in networks, Nat. Phys., 8, 25, 10.1038/nphys2162
Newman, 2003, Mixing patterns in networks, Phys. Rev. E, 67, 026126, 10.1103/PhysRevE.67.026126
Borgatti, 2000, Models of core/periphery structures, Soc. Netw., 21, 375, 10.1016/S0378-8733(99)00019-2
Holland, 1983, Stochastic blockmodels: First steps, Soc. Networks, 5, 109, 10.1016/0378-8733(83)90021-7
Doreian, 2004, Generalized blockmodeling of two-mode network data, Soc. Netw., 26, 29, 10.1016/j.socnet.2004.01.002
Rohe, 2016, Co-clustering directed graphs to discover asymmetries and directional communities, Proc. Natl. Acad. Sci. USA, 113, 12679, 10.1073/pnas.1525793113
Larremore, 2014, Efficiently inferring community structure in bipartite networks, Phys. Rev. E, 90, 012805, 10.1103/PhysRevE.90.012805
Olhede, 2014, Network histograms and universality of blockmodel approximation, Proc. Natl. Acad. Sci. USA, 111, 14722, 10.1073/pnas.1400374111
Peixoto, 2012, Entropy of stochastic blockmodel ensembles, Phys. Rev. E, 85, 056122, 10.1103/PhysRevE.85.056122
Guimerà, 2012, Predicting human preferences using the block structure of complex social networks, PLoS One, 7, 10.1371/journal.pone.0044620
Ball, 2011, Efficient and principled method for detecting communities in networks, Phys. Rev. E, 84, 036103, 10.1103/PhysRevE.84.036103
Hric, 2016, Network structure, metadata, and the prediction of missing nodes and annotations, Phys. Rev. X, 6, 031038
Gerlach, 2018, A network approach to topic models, Sci. Adv., 4, eaaq1360, 10.1126/sciadv.aaq1360
Blei, 2003, Latent Dirichlet allocation, J. Mach. Learn. Res., 3, 993
Sheng, 2003, Biclustering microarray data by Gibbs sampling, Bioinformatics, 19, ii196, 10.1093/bioinformatics/btg1078
Iyer, 2012, Percolation and connectivity in AB random geometric graphs, Adv. Appl. Probab., 44, 21, 10.1239/aap/1331216643
Penrose, 2003
Waxman, 1988, Routing of multipoint connections, IEEE J. Sel. Areas Commun., 6, 1617, 10.1109/49.12889
Serrano, 2008, Self-similarity of complex networks and hidden metric spaces, Phys. Rev. Lett., 100, 078701, 10.1103/PhysRevLett.100.078701
Kitsak, 2017, Latent geometry of bipartite networks, Phys. Rev. E, 95, 032309, 10.1103/PhysRevE.95.032309
Mézard, 2012, Uncovering the hidden geometry behind metabolic networks, Mol. Biosyst., 8, 843, 10.1039/c2mb05306c
Krioukov, 2016, Clustering implies geometry in networks, Phys. Rev. Lett., 116, 208302, 10.1103/PhysRevLett.116.208302
Newman, 2003, Properties of highly clustered networks, Phys. Rev. E, 68, 026121, 10.1103/PhysRevE.68.026121
Davis, 1967
Holland, 1976, Local structure in social networks, Sociol. Methodol., 7, 1, 10.2307/270703
Gleeson, 2009, Analytical results for bond percolation and K-Core sizes on clustered networks, Phys. Rev. E, 80, 046121, 10.1103/PhysRevE.80.046121
Trapman, 2007, On analytical approaches to epidemics on networks, Theor. Popul. Biol., 71, 160, 10.1016/j.tpb.2006.11.002
Newman, 2009, Random graphs with clustering, Phys. Rev. Lett., 103, 058701, 10.1103/PhysRevLett.103.058701
Miller, 2009, Percolation and epidemics in random clustered networks, Phys. Rev. E, 80, 020901, 10.1103/PhysRevE.80.020901
Gleeson, 2009, Bond percolation on a class of clustered random networks, Phys. Rev. E, 80, 036107, 10.1103/PhysRevE.80.036107
Karrer, 2010, Random graphs containing arbitrary distributions of subgraphs, Phys. Rev. E, 82, 066118, 10.1103/PhysRevE.82.066118
Allard, 2012, Bond percolation on a class of correlated and clustered random graphs, J. Phys. Math. Theor., 45, 405005, 10.1088/1751-8113/45/40/405005
Allard, 2015, General and exact approach to percolation on random graphs, Phys. Rev. E, 92, 062807, 10.1103/PhysRevE.92.062807
Ritchie, 2017, Generation and analysis of networks with a prescribed degree sequence and subgraph family: Higher-order structure matters, J. Complex Netw., 5, 1
Wegner, 2014, Subgraph covers: An information-theoretic approach to motif analysis in networks, Phys. Rev. X, 4, 041026
Bollobás, 2011, Sparse random graphs with clustering, Random Struct. Algorithms, 38, 269, 10.1002/rsa.20322
Newman, 2015, Generalized communities in networks, Phys. Rev. Lett., 115, 088701, 10.1103/PhysRevLett.115.088701
Devanny, 2016, The computational hardness of Dk-series
Pattison, 2002, Neighborhood-based models for social networks, Sociol. Methodol., 32, 301, 10.1111/1467-9531.00119
Watts, 2002, Identity and search in social networks, Science, 296, 1302, 10.1126/science.1070120
Yang, 2012, Community-affiliation graph model for overlapping network community detection, 1170
Hébert-Dufresne, 2010, Propagation dynamics on networks featuring complex topologies, Phys. Rev. E, 82, 036115, 10.1103/PhysRevE.82.036115
Seshadhri, 2012, Community structure and scale-free collections of Erdős-Rényi graphs, Phys. Rev. E, 85, 056109, 10.1103/PhysRevE.85.056109
Karoński, 1999, On random intersection graphs: The subgraph problem, Combin. Probab. Comput., 8, 131, 10.1017/S0963548398003459
Erdös, 1966, The representation of a graph by set intersections, Canad. J. Math., 18, 106, 10.4153/CJM-1966-014-3
Frieze, 2016
Nikoletseas, 2008, Large independent sets in general random intersection graphs, Theoret. Comput. Sci., 406, 215, 10.1016/j.tcs.2008.06.047
Deijfen, 2009, Random intersection graphs with tunable degree distribution and clustering, Probab. Engrg. Inform. Sci., 23, 661, 10.1017/S0269964809990064
Godehardt, 2003, Two models of random intersection graphs for classification, 67
Davis, 2008, Clearing the FOG: Fuzzy, overlapping groups for social networks, Soc. Netw., 30, 201, 10.1016/j.socnet.2008.03.001
Barber, 2008, Clique matrices for statistical graph decomposition and parameterising restricted positive definite matrices, Uncertain. Artif. Intell., 26
S.A. Williamson, M. Tec, Random clique covers for graphs with local density and global sparsity, in: Proceedings of the 2019 Conference on Uncertainty in Artificial Intelligence, 2018.
Ball, 2014, Epidemics on random intersection graphs, Ann. Appl. Probab., 24, 1081, 10.1214/13-AAP942
Xie, 2013, Overlapping community detection in networks: The state-of-the-art and comparative study, Acm Comput. Surv. Csur, 45, 43
Erdős, 1959, On random graphs I, Publ. Math., 6, 290
Gilbert, 1959, Random graphs, Ann. Math. Stat., 30, 1141, 10.1214/aoms/1177706098
Erdős, 1960, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci, 5, 17
De La Vega, 1982, Sur La Cardinalité Maximum Des Couplages d’hypergraphes Aléatoires Uniformes, Discrete Math., 40, 315
Schmidt-Pruzan, 1985, Component structure in the evolution of random hypergraphs, Combinatorica, 5, 81, 10.1007/BF02579445
de Arruda, 2020, Social contagion models on hypergraphs, Phys. Rev. Res., 2, 023032, 10.1103/PhysRevResearch.2.023032
Darling, 2005, Structure of large random hypergraphs, Ann. Appl. Probab., 15, 125, 10.1214/105051604000000567
Mezard, 2009
Dembo, 2008, Finite size scaling for the core of large random hypergraphs, Ann. Appl. Probab., 18, 1993, 10.1214/07-AAP514
Schmidt, 1983, A threshold for perfect matchings in random D-pure hypergraphs, Discrete Math., 45, 287, 10.1016/0012-365X(83)90044-4
Chen, 1996, Coloring bipartite hypergraphs, 345
Demetrovics, 1998, Asymptotic properties of keys and functional dependencies in random databases, Theoret. Comput. Sci., 190, 151, 10.1016/S0304-3975(97)00089-3
Bradde, 2009, The percolation transition in correlated hypergraphs, J. Stat. Mech. Theory Exp., 2009, P07028, 10.1088/1742-5468/2009/07/P07028
Girvan, 2002, Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA, 99, 7821, 10.1073/pnas.122653799
Newman, 2004, Finding and evaluating community structure in networks, Phys. Rev. E, 69, 026113, 10.1103/PhysRevE.69.026113
Chung, 2002, Connected components in random graphs with given expected degree sequences, Ann. Comb., 6, 125, 10.1007/PL00012580
Stasi, 2014
Ghoshdastidar, 2014, Consistency of spectral partitioning of uniform hypergraphs under planted partition model, 397
Ke, 2019
Ahn, 2018, Hypergraph spectral clustering in the weighted stochastic block model, IEEE J. Sel. Top. Signal Process., 12, 959, 10.1109/JSTSP.2018.2837638
Paul, 2018
Turnbull, 2019
Leskovec, 2005, Realistic, mathematically tractable graph generation and evolution, using Kronecker multiplication, 133
Eikmeier, 2018, The HyperKron Graph Model for higher-order features, 941
Kahle, 2011, Random geometric complexes, Discrete Comput. Geom., 45, 553, 10.1007/s00454-010-9319-3
Linial, 2006, Homological connectivity of random 2-complexes, Combinatorica, 26, 475, 10.1007/s00493-006-0027-9
Kahle, 2014, Topology of random simplicial complexes: A survey, AMS Contemp. Math., 620, 201, 10.1090/conm/620/12367
Meshulam, 2009, Homological connectivity of random K-dimensional complexes, Random Struct. Algorithms, 34, 408, 10.1002/rsa.20238
Kahle, 2009, Topology of random clique complexes, Discrete Math., 309, 1658, 10.1016/j.disc.2008.02.037
Fowler, 2015
Iacopini, 2019, Simplicial models of social contagion, Nature Commun., 10, 2485, 10.1038/s41467-019-10431-6
Alberici, 2017, Aggregation models on hypergraphs, Ann. Phys., 376, 412, 10.1016/j.aop.2016.12.001
Zuev, 2015, Exponential random simplicial complexes, J. Phys. A, 48, 465002, 10.1088/1751-8113/48/46/465002
Chazal, 2017
Kahle, 2013, Limit theorems for Betti numbers of random simplicial complexes, Homol. Homotopy Appl., 15, 343, 10.4310/HHA.2013.v15.n1.a17
Bobrowski, 2018, Topology of random geometric complexes: A survey, J. Appl. Comput. Topol., 1, 331, 10.1007/s41468-017-0010-0
Fasy, 2014, Confidence sets for persistence diagrams, Ann. Statist., 42, 2301, 10.1214/14-AOS1252
Bianconi, 2018, Topological percolation on hyperbolic simplicial complexes, Phys. Rev. E, 98, 052308, 10.1103/PhysRevE.98.052308
Bianconi, 2019, Percolation on branching simplicial and cell complexes and its relation to interdependent percolation, Phys. Rev. E, 100, 062311, 10.1103/PhysRevE.100.062311
Overgoor, 2019, Choosing to grow a graph: Modeling network formation as discrete choice, 1409
Petri, 2018, Simplicial activity driven model, Phys. Rev. Lett., 121, 228301, 10.1103/PhysRevLett.121.228301
Ergün, 2002, Human sexual contact network as a bipartite graph, Physica A, 308, 483, 10.1016/S0378-4371(02)00628-3
Ramasco, 2004, Self-organization of collaboration networks, Phys. Rev. E, 70, 036106, 10.1103/PhysRevE.70.036106
Beguerisse Díaz, 2010, Competition for popularity in bipartite networks, Chaos, 20, 043101, 10.1063/1.3475411
Sneppen, 2004, A simple model for self-organization of bipartite networks, Europhys. Lett., 67, 349, 10.1209/epl/i2004-10074-0
Bak, 1987, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett., 59, 381, 10.1103/PhysRevLett.59.381
Friel, 2016, Interlocking directorates in Irish companies using a latent space model for bipartite networks, Proc. Natl. Acad. Sci. USA, 113, 6629, 10.1073/pnas.1606295113
Evans, 2007, Exact solutions for network rewiring models, Eur. Phys. J. B, 56, 65, 10.1140/epjb/e2007-00084-8
Evans, 2007, Exact solution for the time evolution of network rewiring models, Phys. Rev. E, 75, 056101, 10.1103/PhysRevE.75.056101
Wu, 2015, Emergent complex network geometry, Sci. Rep., 5, 10073, 10.1038/srep10073
Pollner, 2005, Preferential attachment of communities: The same principle, but a higher level, Europhys. Lett., 73, 478, 10.1209/epl/i2005-10414-6
Zhou, 2008, Weighted evolving networks with self-organized communities, Commun. Theor. Phys., 50, 261, 10.1088/0253-6102/50/1/50
Hébert-Dufresne, 2011, Structural preferential attachment: Network organization beyond the link, Phys. Rev. Lett., 107, 158702, 10.1103/PhysRevLett.107.158702
Hébert-Dufresne, 2012, Structural preferential attachment: Stochastic process for the growth of scale-free, modular, and self-similar systems, Phys. Rev. E, 85, 026108, 10.1103/PhysRevE.85.026108
Young, 2016, Growing networks of overlapping communities with internal structure, Phys. Rev. E, 94, 022317, 10.1103/PhysRevE.94.022317
Hébert-Dufresne, 2015, Complex networks as an emerging property of hierarchical preferential attachment, Phys. Rev. E, 92, 062809, 10.1103/PhysRevE.92.062809
Aldous, 1985, Exchangeability and related topics, 1
Griffiths, 2011, The Indian buffet process: An introduction and review, J Mach Learn Res, 12, 1185
Zhang, 2010, A hypergraph model of social tagging networks, J. Stat. Mech. Theory Exp., 2010, P10005, 10.1088/1742-5468/2010/10/P10005
Wang, 2010, Evolving hypernetwork model, Eur. Phys. J. B, 77, 493, 10.1140/epjb/e2010-00297-8
Liu, 2012, A social network model exhibiting tunable overlapping community structure, Procedia Comput. Sci., 9, 1400, 10.1016/j.procs.2012.04.154
Hu, 2019, Hypernetwork models based on random hypergraphs, Int. J. Mod. Phys. C IJMPC, 30, 1
Guang-Yong, 2013, A local-world evolving hypernetwork model, Chin. Phys. B, 23, 018901
Wu, 2014, Synchronization of an evolving complex hyper-network, Appl. Math. Model., 38, 2961, 10.1016/j.apm.2013.11.009
Guo, 2016, Non-uniform evolving hypergraphs and weighted evolving hypergraphs, Sci. Rep., 6, 36648, 10.1038/srep36648
Krapivsky, 2000, Connectivity of growing random networks, Phys. Rev. Lett., 85, 4629, 10.1103/PhysRevLett.85.4629
Guo, 2015, Brand effect versus competitiveness in hypernetworks, Chaos, 25, 023102, 10.1063/1.4907016
Bianconi, 2015, Interdisciplinary and physics challenges of network theory, Europhys. Lett., 111, 56001, 10.1209/0295-5075/111/56001
Bianconi, 2015, Complex quantum network manifolds in dimension d¿2 are scale-free, Sci. Rep., 5, 13979, 10.1038/srep13979
Bianconi, 2015, Complex quantum network geometries: Evolution and phase transitions, Phys. Rev. E, 92, 022815, 10.1103/PhysRevE.92.022815
Courtney, 2017, Weighted growing simplicial complexes, Phys. Rev. E, 95, 062301, 10.1103/PhysRevE.95.062301
Fountoulakis, 2019
Sizemore, 2018, Knowledge gaps in the early growth of semantic feature networks, Nat. Hum. Behav., 2, 682, 10.1038/s41562-018-0422-4
Blevins, 2020, On the reorderability of node-filtered order complexes, Phys. Rev. E, 101, 052311, 10.1103/PhysRevE.101.052311
da Silva, 2018, Complex network view of evolving manifolds, Phys. Rev. E, 97, 032316, 10.1103/PhysRevE.97.032316
Courtney, 2018, Dense power-law networks and simplicial complexes, Phys. Rev. E, 97, 052303, 10.1103/PhysRevE.97.052303
Kim, 2018
Masuda, 2017, Random walks and diffusion on networks, Phys. Rep., 10.1016/j.physrep.2017.07.007
Aldous, 2002, Reversible Markov chains and random walks on graphs, Unfinished Monograph
Samukhin, 2008, Laplacian spectra of, and random walks on, complex networks: Are scale-free architectures really important?, Phys. Rev. E, 77, 036115, 10.1103/PhysRevE.77.036115
Hoffmann, 2012, Generalized master equations for non-Poisson dynamics on networks, Phys. Rev. E, 86, 046102, 10.1103/PhysRevE.86.046102
DeGroot, 1974, Reaching a consensus, J. Amer. Statist. Assoc., 69, 118, 10.1080/01621459.1974.10480137
Boltzmann, 1964
Tolman, 1979
Chung, 1997
Neuhäuser, 2020, Multibody interactions and nonlinear consensus dynamics on networked systems, Phys. Rev. E, 101, 032310, 10.1103/PhysRevE.101.032310
Torres, 2020, Simplicial complexes: Higher-order spectral dimension and dynamics, J. Phys.: Complex., 1, 015002
Burioni, 1996, Universal properties of spectral dimension, Phys. Rev. Lett., 76, 1091, 10.1103/PhysRevLett.76.1091
Millán, 2019, Synchronization in network geometries with finite spectral dimension, Phys. Rev. E, 99, 022307, 10.1103/PhysRevE.99.022307
J. Jia, M.T. Schaub, S. Segarra, A.R. Benson, Graph-based semi-supervised & active learning for edge flows, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 761–771.
Mukherjee, 2016, Random walks on simplicial complexes and harmonics, Random Struct. Algorithms, 49, 379, 10.1002/rsa.20645
Dua, 2017
Carletti, 2020, Random walks on hypergraphs, Phys. Rev. E, 101, 022308, 10.1103/PhysRevE.101.022308
U. Chitra, B.J. Raphael, Random walks on hypergraphs with edge-dependent vertex weights, in: Proceedings of the 36th International Conference on Machine Learning, 2019, pp. 1172–1181.
Agarwal, 2006, Higher order learning with graphs, 17
Li, 2017, Inhomogeneous hypergraph clustering with applications, 2308
Li, 2018, E-tail product return prediction via hypergraph-based local graph cut, 519
Ding, 2010, Interactive image segmentation using probabilistic hypergraphs, Pattern Recognit., 43, 1863, 10.1016/j.patcog.2009.11.025
Huang, 2010, Image retrieval via probabilistic hypergraph ranking, 3376
Ducournau, 2014, Random walks in directed hypergraphs and application to semi-supervised image segmentation, Comput. Vis. Image Underst., 120, 91, 10.1016/j.cviu.2013.10.012
Zeng, 2016, Learn to rank images: A unified probabilistic hypergraph model for visual search, Math. Probl. Eng., 2016, 10.1155/2016/7916450
Zhang, 2018, Dynamic hypergraph structure learning, 3162
Chan, 2015
Chan, 2019, Diffusion operator and spectral analysis for directed hypergraph Laplacian, Theoret. Comput. Sci., 784, 46, 10.1016/j.tcs.2019.03.032
Billings, 2019
Salnikov, 2018, Simplicial complexes and complex systems, Eur. J. Phys., 40, 014001, 10.1088/1361-6404/aae790
Tran, 2015, Combinatorial and random walk hypergraph Laplacian eigenmaps, Int. J. Mach. Learn. Comput., 5, 462, 10.18178/ijmlc.2015.5.6.553
S.N. Satchidanand, H. Ananthapadmanaban, B. Ravindran, Extended discriminative random walk: A hypergraph approach to multi-view multi-relational transductive learning, in: Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
Liu, 2018, Quantum walks on regular uniform hypergraphs, Sci. Rep., 8, 9548, 10.1038/s41598-018-27825-z
Cooper, 2011, The cover times of random walks on hypergraphs, 210
Harush, 2017, Dynamic patterns of information flow in complex networks, Nature Commun., 8, 2181, 10.1038/s41467-017-01916-3
Turing, 1952, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B Biol. Sci., 237, 37, 10.1098/rstb.1952.0012
Arenas, 2002, Self-organized criticality in evolutionary systems with local interaction, J. Econom. Dynam. Control, 26, 2115, 10.1016/S0165-1889(01)00025-2
Colizza, 2007, Reaction–diffusion processes and metapopulation models in heterogeneous networks, Nat. Phys., 3, 276, 10.1038/nphys560
Nakao, 2010, Turing patterns in network-organized activator–inhibitor systems, Nat. Phys., 6, 544, 10.1038/nphys1651
Asllani, 2014, The theory of pattern formation on directed networks, Nature Commun., 5, 1, 10.1038/ncomms5517
Kouvaris, 2017, Stationary patterns in star networks of bistable units: Theory and application to chemical reactions, Phys. Rev. E, 95, 042203, 10.1103/PhysRevE.95.042203
Cencetti, 2018, Pattern invariance for reaction-diffusion systems on complex networks, Sci. Rep., 8, 1, 10.1038/s41598-018-34372-0
Carletti, 2020
Huygens, 1986, The pendulum clock, Trans. RJ Blackwell Iowa State Univ. Press Ames.
Néda, 2000, The sound of many hands clapping, Nature, 403, 849, 10.1038/35002660
Buck, 1988, Synchronous rhythmic flashing of fireflies. II, Q. Rev. Biol., 63, 265, 10.1086/415929
Boccaletti, 2002, The synchronization of chaotic systems, Phys. Rep., 366, 1, 10.1016/S0370-1573(02)00137-0
Pikovsky, 2003
Strogatz, 2004
Boccaletti, 2018
Kuramoto, 1984
Acebrón, 2005, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77, 137, 10.1103/RevModPhys.77.137
Arenas, 2008, Synchronization in complex networks, Phys. Rep., 469, 93, 10.1016/j.physrep.2008.09.002
Rodrigues, 2016, The Kuramoto model in complex networks, Phys. Rep., 610, 1, 10.1016/j.physrep.2015.10.008
Barahona, 2002, Synchronization in small-world systems, Phys. Rev. Lett., 89, 054101, 10.1103/PhysRevLett.89.054101
Gómez-Gardeñes, 2011, Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett., 106, 128701, 10.1103/PhysRevLett.106.128701
Boccaletti, 2016, Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization, Phys. Rep., 660, 1, 10.1016/j.physrep.2016.10.004
Nicosia, 2013, Remote synchronization reveals network symmetries and functional modules, Phys. Rev. Lett., 110, 174102, 10.1103/PhysRevLett.110.174102
Pecora, 2014, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nature Commun., 5, 1, 10.1038/ncomms5079
Abrams, 2004, Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 174102, 10.1103/PhysRevLett.93.174102
Bi, 2016, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett., 117, 204101, 10.1103/PhysRevLett.117.204101
Aguiar, 2016, An overview of synchrony in coupled cell networks, 25
Nijholt, 2017, Center manifolds of coupled cell networks, SIAM J. Math. Anal., 49, 4117, 10.1137/16M106861X
Golubitsky, 2006, Nonlinear dynamics of networks: The groupoid formalism, Bull. Am. Math. Soc., 43, 305, 10.1090/S0273-0979-06-01108-6
Stewart, 2003, Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst., 2, 609, 10.1137/S1111111103419896
Golubitsky, 2005, Patterns of synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. Dyn. Syst., 4, 78, 10.1137/040612634
Watanabe, 1993, Integrability of a globally coupled oscillator array, Phys. Rev. Lett., 70, 2391, 10.1103/PhysRevLett.70.2391
Watanabe, 1994, Constants of motion for superconducting Josephson arrays, Physica D, 74, 197, 10.1016/0167-2789(94)90196-1
Ott, 2008, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18, 037113, 10.1063/1.2930766
Bick, 2020, Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review, J. Math. Neurosci., 10, 1, 10.1186/s13408-020-00086-9
Vega, 2004, Fitness for synchronization of network motifs, Physica A, 343, 279, 10.1016/j.physa.2004.05.033
D’Huys, 2008, Synchronization properties of network motifs: Influence of coupling delay and symmetry, Chaos, 18, 037116, 10.1063/1.2953582
Skardal, 2019, Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes, Phys. Rev. Lett., 122, 248301, 10.1103/PhysRevLett.122.248301
Xu, 2020, Bifurcation analysis and structural stability of simplicial oscillator populations, Phys. Rev. Research, 2, 023281, 10.1103/PhysRevResearch.2.023281
Tanaka, 2011, Multistable attractors in a network of phase oscillators with three-body interactions, Phys. Rev. Lett., 106, 224101, 10.1103/PhysRevLett.106.224101
Ashwin, 2016, Hopf normal form with SN symmetry and reduction to systems of nonlinearly coupled phase oscillators, Physica D, 325, 14, 10.1016/j.physd.2016.02.009
Komarov, 2015, Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling, Phys. Rev. E, 92, 020901, 10.1103/PhysRevE.92.020901
Skardal, 2019
Pazó, 2005, Thermodynamic limit of the first-order phase transition in the Kuramoto model, Phys. Rev. E, 72, 046211, 10.1103/PhysRevE.72.046211
Nicosia, 2017, Collective phenomena emerging from the interactions between dynamical processes in multiplex networks, Phys. Rev. Lett., 118, 138302, 10.1103/PhysRevLett.118.138302
D’Souza, 2019, Explosive phenomena in complex networks, Adv. Phys., 68, 123, 10.1080/00018732.2019.1650450
Berec, 2016, Chimera state and route to explosive synchronization, Chaos, 86, 75
Berec, 2016, Explosive synchronization in clustered scale-free networks: Revealing the existence of chimera state, Eur. Phys. J. Spec. Top., 225, 7, 10.1140/epjst/e2016-02611-2
Kuehn, 2020
Stankovski, 2015, Coupling functions in networks of oscillators, New J. Phys., 17, 035002, 10.1088/1367-2630/17/3/035002
León, 2019, Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation, Phys. Rev. E, 100, 012211, 10.1103/PhysRevE.100.012211
Millán, 2020, Explosive higher-order Kuramoto dynamics on simplicial complexes, Phys. Rev. Lett., 124, 218301, 10.1103/PhysRevLett.124.218301
Millán, 2018, Complex network geometry and frustrated synchronization, Sci. Rep., 8, 9910, 10.1038/s41598-018-28236-w
Gong, 2019, Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles, Phys. Rev. E, 100, 062210, 10.1103/PhysRevE.100.062210
Rosenblum, 2007, Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling, Phys. Rev. Lett., 98, 064101, 10.1103/PhysRevLett.98.064101
Pikovsky, 2009, Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators, Physica D, 238, 27, 10.1016/j.physd.2008.08.018
Burylko, 2011, Desynchronization transitions in nonlinearly coupled phase oscillators, Physica D, 240, 1352, 10.1016/j.physd.2011.05.016
Nakao, 2016, Phase reduction approach to synchronisation of nonlinear oscillators, Contemp. Phys., 57, 188, 10.1080/00107514.2015.1094987
Pietras, 2019, Network dynamics of coupled oscillators and phase reduction techniques, Phys. Rep., 10.1016/j.physrep.2019.06.001
Ashwin, 2016, Identical phase oscillator networks: Bifurcations, symmetry and reversibility for generalized coupling, Front. Appl. Math. Stat., 2, 7, 10.3389/fams.2016.00007
Matheny, 2019, Exotic states in a simple network of nanoelectromechanical oscillators, Science, 363, eaav7932, 10.1126/science.aav7932
Bick, 2016, Chaos in generically coupled phase oscillator networks with nonpairwise interactions, Chaos, 26, 094814, 10.1063/1.4958928
Bick, 2018, Heteroclinic switching between chimeras, Phys. Rev. E, 97, 050201, 10.1103/PhysRevE.97.050201
Bick, 2019, Heteroclinic dynamics of localized frequency synchrony: heteroclinic cycles for small populations, J. Nonlin. Sci.
Bick, 2019, Heteroclinic dynamics of localized frequency synchrony: Stability of heteroclinic cycles and networks, J. Nonlin. Sci.
Bick, 2011, Chaos in symmetric phase oscillator networks, Phys. Rev. Lett., 107, 244101, 10.1103/PhysRevLett.107.244101
Komarov, 2013, Dynamics of multifrequency oscillator communities, Phys. Rev. Lett., 110, 134101, 10.1103/PhysRevLett.110.134101
Rosenblum, 2019, Numerical phase reduction beyond the first order approximation, Chaos, 29, 011105, 10.1063/1.5079617
Pecora, 1990, Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821, 10.1103/PhysRevLett.64.821
Rosenblum, 1996, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76, 1804, 10.1103/PhysRevLett.76.1804
Wu, 1998, Synchronization in arrays of chaotic circuits coupled via hypergraphs: static and dynamic coupling, 287
Krawiecki, 2014, Chaotic synchronization on complex hypergraphs, Chaos Solitons Fractals, 65, 44, 10.1016/j.chaos.2014.04.009
Gambuzza, 2020
Lodato, 2007, Synchronization properties of network motifs, Europhys. Lett., 78, 28001, 10.1209/0295-5075/78/28001
Soriano, 2012, Synchronization in simple network motifs with negligible correlation and mutual information measures, Phys. Rev. Lett., 108, 134101, 10.1103/PhysRevLett.108.134101
Krishnagopal, 2017, Synchronization patterns: From network motifs to hierarchical networks, Phil. Trans. R. Soc. A, 375, 20160216, 10.1098/rsta.2016.0216
Amritkar, 2005, Synchronized clusters in coupled map networks. II. Stability analysis, Phys. Rev. E, 72, 016212, 10.1103/PhysRevE.72.016212
Pecora, 1998, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80, 2109, 10.1103/PhysRevLett.80.2109
Englert, 2011, Synchronization of chaotic networks with time-delayed couplings: an analytic study, Phys. Rev. E, 83, 046222, 10.1103/PhysRevE.83.046222
Sorrentino, 2007, Network synchronization of groups, Phys. Rev. E, 76, 056114, 10.1103/PhysRevE.76.056114
Koseska, 2013, Oscillation quenching mechanisms: amplitude vs. oscillation death, Phys. Rep., 531, 173, 10.1016/j.physrep.2013.06.001
Mulas, 2020
Dayan, 2001
Gerstner, 2002
Bian, 2011, Adaptive synchronization of bipartite dynamical networks with distributed delays and nonlinear derivative coupling, Commun. Nonlinear Sci. Numer. Simul., 16, 4089, 10.1016/j.cnsns.2011.02.035
Shilnikov, 2008, Polyrhythmic synchronization in bursting networking motifs, Chaos, 18, 037120, 10.1063/1.2959850
Matias, 2011, Anticipated synchronization in a biologically plausible model of neuronal motifs, Phys. Rev. E, 84, 021922, 10.1103/PhysRevE.84.021922
Gollo, 2014, Mechanisms of zero-lag synchronization in cortical motifs, PLOS Comput. Biol., 10, 10.1371/journal.pcbi.1003548
Wojcik, 2014, Key bifurcations of bursting polyrhythms in 3-cell central pattern generators, PloS one, 9, 10.1371/journal.pone.0092918
Collens, 2020
Smirnov, 2005, Detection of weak directional coupling: phase-dynamics approach versus state-space approach, Phys. Rev. E, 71, 036207, 10.1103/PhysRevE.71.036207
Frenzel, 2007, Partial mutual information for coupling analysis of multivariate time series, Phys. Rev. Lett., 99, 204101, 10.1103/PhysRevLett.99.204101
Rosenblum, 2001, Detecting direction of coupling in interacting oscillators, Phys. Rev. E, 64, 045202, 10.1103/PhysRevE.64.045202
Kralemann, 2011, Reconstructing phase dynamics of oscillator networks, Chaos, 21, 025104, 10.1063/1.3597647
Kralemann, 2014, Reconstructing effective phase connectivity of oscillator networks from observations, New J. Phys., 16, 085013, 10.1088/1367-2630/16/8/085013
Kralemann, 2008, Phase dynamics of coupled oscillators reconstructed from data, Phys. Rev. E, 77, 066205, 10.1103/PhysRevE.77.066205
Tass, 1998, Detection of n:m phase locking from noisy data: application to magnetoencephalography, Phys. Rev. Lett., 81, 3291, 10.1103/PhysRevLett.81.3291
Kralemann, 2013, Detecting triplet locking by triplet synchronization indices, Phys. Rev. E, 87, 052904, 10.1103/PhysRevE.87.052904
Jia, 2015, Experimental study of the triplet synchronization of coupled nonidentical mechanical metronomes, Sci. Rep., 5, 17008, 10.1038/srep17008
Duggento, 2012, Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators, Phys. Rev. E, 86, 061126, 10.1103/PhysRevE.86.061126
Pastor-Satorras, 2001, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 3200, 10.1103/PhysRevLett.86.3200
Keeling, 2011
Pastor-Satorras, 2015, Epidemic processes in complex networks, Rev. Modern Phys., 87, 925, 10.1103/RevModPhys.87.925
de Arruda, 2018, Fundamentals of spreading processes in single and multilayer complex networks, Phys. Rep., 756, 1, 10.1016/j.physrep.2018.06.007
Goffman, 1964, Generalization of epidemic theory: An application to the transmission of ideas, Nature, 204, 225, 10.1038/204225a0
Centola, 2018
Nowak, 1990, From private attitude to public opinion: A dynamic theory of social impact., Psychol. Rev., 97, 362, 10.1037/0033-295X.97.3.362
Axelrod, 1997
Sen, 2014
Castellano, 2009, Statistical physics of social dynamics, Rev. Modern Phys., 81, 591, 10.1103/RevModPhys.81.591
Baronchelli, 2018, The emergence of consensus: A primer, R. Soc. Open Sci., 5, 172189, 10.1098/rsos.172189
Kermack, 1927, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 115, 700
Anderson, 1992
Hethcote, 2000, The mathematics of infectious diseases, SIAM Rev., 42, 599, 10.1137/S0036144500371907
Hufnagel, 2004, Forecast and control of epidemics in a globalized world, Proc. Natl. Acad. Sci. USA, 101, 15124, 10.1073/pnas.0308344101
Colizza, 2006, The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Natl. Acad. Sci. USA, 103, 2015, 10.1073/pnas.0510525103
Zhang, 2017, Spread of zika virus in the americas, Proc. Natl. Acad. Sci. USA, 114, E4334, 10.1073/pnas.1620161114
y Piontti, 2018
Viboud, 2019, The future of influenza forecasts, Proc. Natl. Acad. Sci. USA, 116, 2802, 10.1073/pnas.1822167116
Kucharski, 2020, Early dynamics of transmission and control of COVID-19: A mathematical modelling study, Lancet Infect. Dis., 10.1016/S1473-3099(20)30144-4
Kraemer, 2020, The effect of human mobility and control measures on the COVID-19 epidemic in China, Science, 10.1126/science.abb4218
Vazquez, 2007, Impact of non-Poissonian activity patterns on spreading processes, Phys. Rev. Lett., 98, 158702, 10.1103/PhysRevLett.98.158702
Bansal, 2010, The dynamic nature of contact networks in infectious disease epidemiology, J. Biol. Dyn., 4, 478, 10.1080/17513758.2010.503376
Karsai, 2011, Small but slow world: How network topology and burstiness slow down spreading, Phys. Rev. E, 83, 025102, 10.1103/PhysRevE.83.025102
Rocha, 2011, Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts, PLOS Comput. Biol., 7, 10.1371/journal.pcbi.1001109
Wang, 2019, Coevolution spreading in complex networks, Phys. Rep.
Gleeson, 2011, High-accuracy approximation of binary-state dynamics on networks, Phys. Rev. Lett., 107, 068701, 10.1103/PhysRevLett.107.068701
Gleeson, 2013, Binary-state dynamics on complex networks: pair approximation and beyond, Phys. Rev. X, 3, 021004
Cozzo, 2013, Contact-based social contagion in multiplex networks, Phys. Rev. E, 88, 050801, 10.1103/PhysRevE.88.050801
Wang, 2017, Unification of theoretical approaches for epidemic spreading on complex networks, Rep. Progr. Phys., 80, 036603, 10.1088/1361-6633/aa5398
Kiss, 2017
Daley, 1964, Epidemics and rumours, Nature, 204, 10.1038/2041118a0
Bass, 1969, A new product growth for model consumer durables, Manag. Sci., 15, 215, 10.1287/mnsc.15.5.215
Bikhchandani, 1992, A theory of fads, fashion, custom, and cultural change as informational cascades, J. Polit. Econ., 100, 992, 10.1086/261849
Moreno, 2004, Dynamics of rumor spreading in complex networks, Phys. Rev. E, 69, 066130, 10.1103/PhysRevE.69.066130
Rogers, 2010
Centola, 2007, Complex contagions and the weakness of long ties, Am. J. Sociol., 113, 702, 10.1086/521848
Guilbeault, 2018, Complex contagions: a decade in review, 3
Kee, 2013, Social groups, social media, and higher dimensional social structures: a simplicial model of social aggregation for computational communication research, Commun. Q., 61, 35, 10.1080/01463373.2012.719566
SocioPatterns Collaboration, http://www.sociopatterns.org/.
Cisneros-Velarde, 2020
Gómez, 2010, Discrete-time Markov chain approach to contact-based disease spreading in complex networks, Europhys. Lett., 89, 38009, 10.1209/0295-5075/89/38009
Matamalas, 2018, Effective approach to epidemic containment using link equations in complex networks, Sci. Adv., 4, eaau4212, 10.1126/sciadv.aau4212
Matamalas, 2020, Abrupt phase transition of epidemic spreading in simplicial complexes, Phys. Rev. Research, 2, 012049, 10.1103/PhysRevResearch.2.012049
Newman, 2003, Why social networks are different from other types of networks, Phys. Rev. E, 68, 036122, 10.1103/PhysRevE.68.036122
Miller, 2009, Spread of infectious disease through clustered populations, J. R. Soc. Interface, 6, 1121, 10.1098/rsif.2008.0524
Ritchie, 2014, Higher-order structure and epidemic dynamics in clustered networks, J. Theoret. Biol., 348, 21, 10.1016/j.jtbi.2014.01.025
O’Sullivan, 2015, Mathematical modeling of complex contagion on clustered networks, Front. Phys., 3, 71
Hébert-Dufresne, 2015, Complex dynamics of synergistic coinfections on realistically clustered networks, Proc. Natl. Acad. Sci. USA, 112, 10551, 10.1073/pnas.1507820112
St-Onge, 2020
Hébert-Dufresne, 2020
Yang, 2015, Knowledge diffusion in the collaboration hypernetwork, Physica A, 419, 429, 10.1016/j.physa.2014.10.012
Wang, 2015, Improved knowledge diffusion model based on the collaboration hypernetwork, Physica A, 428, 250, 10.1016/j.physa.2015.01.062
Peng, 2019, A hypernetwork-based approach to collaborative retrieval and reasoning of engineering design knowledge, Adv. Eng. Softw., 42, 100956
Bodó, 2016, SIS epidemic propagation on hypergraphs, Bull. Math. Biol., 78, 713, 10.1007/s11538-016-0158-0
Ghoshal, 2004, SIS Epidemics with household structure: the self-consistent field method, Math. Biol., 190, 71
House, 2008, Deterministic epidemic models with explicit household structure, Math. Biosci., 213, 29, 10.1016/j.mbs.2008.01.011
Ball, 2015, Seven challenges for metapopulation models of epidemics, including households models, Epidemics, 10, 63, 10.1016/j.epidem.2014.08.001
Granovetter, 1978, Threshold models of collective behavior, Am. J. Sociol., 83, 1420, 10.1086/226707
Karsai, 2014, Complex contagion process in spreading of online innovation, J. R. Soc. Interface, 11, 20140694, 10.1098/rsif.2014.0694
Suo, 2018, Information spreading dynamics in hypernetworks, Phys. A, 495, 475, 10.1016/j.physa.2017.12.108
Jhun, 2019, Simplicial SIS model in scale-free uniform hypergraph, J. Stat. Mech. Theory Exp., 2019, 123207, 10.1088/1742-5468/ab5367
Lübeck, 2004, Universal scaling behavior of non-equilibrium phase transitions, Internat. J. Modern Phys. B, 18, 3977, 10.1142/S0217979204027748
Ferreira, 2012, Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results, Phys. Rev. E, 86, 041125, 10.1103/PhysRevE.86.041125
de Arruda, 2020
Dahlerup, 1988, From a small to a large minority: Women in scandinavian politics, Scand Polit. Stud., 11, 275, 10.1111/j.1467-9477.1988.tb00372.x
Grey, 2006, Numbers and beyond: the relevance of critical mass in gender research, Polit. Gend., 2, 492
Centola, 2018, Experimental evidence for tipping points in social convention, Science, 360, 1116, 10.1126/science.aas8827
Ma, 2018, Study on information transmission model of enterprise informal organizations based on the hypernetwork, Chin. J. Phys., 56, 2424, 10.1016/j.cjph.2018.06.018
Dietz, 1967, Epidemics and rumours: a survey, J. R. Stat. Soc., 130, 505
Galam, 2008, Sociophysics: a review of galam models, Internat. J. Modern Phys. C, 19, 409, 10.1142/S0129183108012297
Lazer, 2009, Computational social science, Science, 323, 721, 10.1126/science.1167742
Galam, 2012, What is sociophysics about?, 3
Conte, 2012, Manifesto of computational social science, Eur. Phys. J. Spec. Top., 214, 325, 10.1140/epjst/e2012-01697-8
Liggett, 2012
Shao, 2009, Dynamic opinion model and invasion percolation, Phys. Rev. Lett., 103, 018701, 10.1103/PhysRevLett.103.018701
Suchecki, 2004, Conservation laws for the voter model in complex networks, Europhys. Lett., 69, 228, 10.1209/epl/i2004-10329-8
Suchecki, 2005, Voter model dynamics in complex networks: role of dimensionality, disorder, and degree distribution, Phys. Rev. E, 72, 036132, 10.1103/PhysRevE.72.036132
Diakonova, 2016, Irreducibility of multilayer network dynamics: The case of the voter model, New J. Phys., 18, 023010, 10.1088/1367-2630/18/2/023010
Fernández-Gracia, 2014, Is the voter model a model for voters?, Phys. Rev. Lett., 112, 158701, 10.1103/PhysRevLett.112.158701
Kearns, 2006, An experimental study of the coloring problem on human subject networks, Science, 313, 824, 10.1126/science.1127207
Judd, 2010, Behavioral dynamics and influence in networked coloring and consensus, Proc. Natl. Acad. Sci. USA, 107, 14978, 10.1073/pnas.1001280107
Chung, 2014, Hypergraph coloring games and voter models, Internet Math., 10, 66, 10.1080/15427951.2013.833676
Redner, 2019, Reality-inspired voter models: A mini-review, C. R. Phys., 10.1016/j.crhy.2019.05.004
Vazquez, 2008, Generic absorbing transition in coevolution dynamics, Phys. Rev. Lett., 100, 108702, 10.1103/PhysRevLett.100.108702
Horstmeyer, 2020, Adaptive voter model on simplicial complexes, Phys. Rev. E, 101, 022305, 10.1103/PhysRevE.101.022305
Galam, 2002, Minority opinion spreading in random geometry, Eur. Phys. J. B, 25, 403, 10.1140/epjb/e20020045
Watts, 2002, A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. USA, 99, 5766, 10.1073/pnas.082090499
Lanchier, 2013, Stochastic dynamics on hypergraphs and the spatial majority rule model, J. Stat. Phys., 151, 21, 10.1007/s10955-012-0543-5
de Oliveira, 1992, Isotropic majority-vote model on a square lattice, J. Stat. Phys., 66, 273, 10.1007/BF01060069
Pereira, 2005, Majority-vote model on random graphs, Phys. Rev. E, 71, 016123, 10.1103/PhysRevE.71.016123
Latora, 2001, Efficient behavior of small-world networks, Phys. Rev. Lett., 87, 198701, 10.1103/PhysRevLett.87.198701
Campos, 2003, Small-world effects in the majority-vote model, Phys. Rev. E, 67, 026104, 10.1103/PhysRevE.67.026104
Luz, 2007, Majority-vote on directed small-world networks, Internat. J. Modern Phys. C, 18, 1251, 10.1142/S0129183107011297
Lima, 2006, Majority-vote on directed Barabasi–Albert networks, Internat. J. Modern Phys. C, 17, 1257, 10.1142/S0129183106008972
Lima, 2007, Majority-vote on undirected Barabási-Albert networks, Commun. Comput. Phys., 2, 358
Gradowski, 2015, Majority-vote model on scale-free hypergraphs, Acta. Phys. Polon., 127, 1
Hong, 2007, Finite-size scaling in complex networks, Phys. Rev. Lett., 98, 258701, 10.1103/PhysRevLett.98.258701
Deffuant, 2000, Mixing beliefs among interacting agents, Adv. Complex Syst., 3, 87, 10.1142/S0219525900000078
Lorenz, 2007, Continuous opinion dynamics under bounded confidence: A survey, Internat. J. Modern Phys. C, 18, 1819, 10.1142/S0129183107011789
Asch, 1951, Effects of group pressure upon the modification and distortion of judgments, Doc. Gestalt Psychol., 222
Axelrod, 1997, The dissemination of culture: a model with local convergence and global polarization, J.Confl.Resolut., 41, 203, 10.1177/0022002797041002001
Castellano, 2000, Nonequilibrium phase transition in a model for social influence, Phys. Rev. Lett., 85, 3536, 10.1103/PhysRevLett.85.3536
Klemm, 2003, Nonequilibrium transitions in complex networks: A model of social interaction, Phys. Rev. E, 67, 026120, 10.1103/PhysRevE.67.026120
Klemm, 2003, Global culture: A noise-induced transition in finite systems, Phys. Rev. E, 67, 045101, 10.1103/PhysRevE.67.045101
Battiston, 2017, Layered social influence promotes multiculturality in the Axelrod model, Sci. Rep., 7, 1809, 10.1038/s41598-017-02040-4
Maletić, 2014, Consensus formation on a simplicial complex of opinions, Phys. A, 397, 111, 10.1016/j.physa.2013.12.001
Maletić, 2018, Hidden multidimensional social structure modeling applied to biased social perception, Phys. A, 492, 1419, 10.1016/j.physa.2017.11.069
Roca, 2009, Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics, Phys. Life Rev., 6, 208, 10.1016/j.plrev.2009.08.001
Szabó, 2004, Rock-scissors-paper game on regular small-world networks, J. Phys. Math. Gen., 37, 2599, 10.1088/0305-4470/37/7/006
Szolnoki, 2014, Cyclic dominance in evolutionary games: a review, J. R. Soc. Interface, 11, 20140735, 10.1098/rsif.2014.0735
Axelrod, 1984, The evolution of cooperation
Rapoport, 1966, A taxonomy of 2 x 2 games, by anatol rapoport and melvin guyer, S617
Rousseau, 1997, The discourses and other political writings
Luce, 1957
Gui, 2005
Smith, 1982
Smith, 1976, The logic of asymmetric contests, Anim. Behav., 24, 159, 10.1016/S0003-3472(76)80110-8
Cressman, 1995, Evolutionary stability for two-stage Hawk-Dove games, Rocky Mountain J. Math., 145, 10.1216/rmjm/1181072273
Smith, 1972, Game theory and the evolution of fighting, Evol., 8
Diederich, 1989, Replicators with random interactions: A solvable model, Phys. Rev. A, 39, 4333, 10.1103/PhysRevA.39.4333
Hofbauer, 1998
Opper, 1999, Replicator dynamics, Comput. Phys. Comm., 121, 141, 10.1016/S0010-4655(99)00300-8
Chawanya, 2002, Large-dimensional replicator equations with antisymmetric random interactions, J. Phys. Soc. Japan, 71, 429, 10.1143/JPSJ.71.429
Perc, 2010, Coevolutionary games—a mini review, BioSystems, 99, 109, 10.1016/j.biosystems.2009.10.003
Hardin, 1968, The tragedy of the commons, Science, 162, 1243, 10.1126/science.162.3859.1243
Nowak, 1992, Evolutionary games and spatial chaos, Nature, 359, 826, 10.1038/359826a0
Santos, 2005, Scale-free networks provide a unifying framework for the emergence of cooperation, Phys. Rev. Lett., 95, 098104, 10.1103/PhysRevLett.95.098104
Gómez-Gardeñes, 2007, Dynamical organization of cooperation in complex topologies, Phys. Rev. Lett., 98, 108103, 10.1103/PhysRevLett.98.108103
Assenza, 2008, Enhancement of cooperation in highly clustered scale-free networks, Phys. Rev. E, 78, 017101, 10.1103/PhysRevE.78.017101
Cassar, 2007, Coordination and cooperation in local, random and small world networks: experimental evidence, Games Econom. Behav., 58, 209, 10.1016/j.geb.2006.03.008
Kirchkamp, 2007, Naive learning and cooperation in network experiments, Games Econom. Behav., 58, 269, 10.1016/j.geb.2006.04.002
Grujić, 2010, Social experiments in the mesoscale: Humans playing a spatial prisoner’s dilemma, PLOS One, 5, 10.1371/journal.pone.0013749
Traulsen, 2010, Human strategy updating in evolutionary games, Proc. Natl. Acad. Sci. USA, 107, 2962, 10.1073/pnas.0912515107
Gracia-Lázaro, 2012, Heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma, Proc. Natl. Acad. Sci. USA, 109, 12922, 10.1073/pnas.1206681109
Grujić, 2014, A comparative analysis of spatial prisoner’s dilemma experiments: conditional cooperation and payoff irrelevance, Sci. Rep., 4, 4615, 10.1038/srep04615
Rand, 2014, Static network structure can stabilize human cooperation, Proc. Natl. Acad. Sci. USA, 111, 17093, 10.1073/pnas.1400406111
Sánchez, 2018, Physics of human cooperation: experimental evidence and theoretical models, J. Stat. Mech. Theory Exp., 2018, 024001, 10.1088/1742-5468/aaa388
Hauert, 2004, Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature, 428, 643, 10.1038/nature02360
Nowak, 2006, Five rules for the evolution of cooperation, Science, 314, 1560, 10.1126/science.1133755
Szabó, 2007, Evolutionary games on graphs, Phys. Rep., 446, 97, 10.1016/j.physrep.2007.04.004
Wang, 2015, Evolutionary games on multilayer networks: a colloquium, Eur. Phys. J. B, 88, 124, 10.1140/epjb/e2015-60270-7
Sigmund, 2010
Archetti, 2012, Review: evolution of cooperation in one-shot social dilemmas without assortment, J. Theoret. Biol., 299, 9, 10.1016/j.jtbi.2011.06.018
Perc, 2013, Evolutionary dynamics of group interactions on structured populations: A review, J. R. Soc. Interface, 10, 20120997, 10.1098/rsif.2012.0997
Perc, 2017, Statistical physics of human cooperation, Phys. Rev., 687, 1
Peña, 2016, Evolutionary games of multiplayer cooperation on graphs, PLOS Comput. Biol., 12, 10.1371/journal.pcbi.1005059
Szabó, 2002, Phase transitions and volunteering in spatial public goods games, Phys. Rev. Lett., 89, 118101, 10.1103/PhysRevLett.89.118101
Brandt, 2003, Punishment and reputation in spatial public goods games, Proc. R. Soc. London B, 270, 1099, 10.1098/rspb.2003.2336
Santos, 2008, Social diversity promotes the emergence of cooperation in public goods games, Nature, 454, 213, 10.1038/nature06940
Rong, 2009, Effect of the degree correlation in public goods game on scale-free networks, Europhys. Lett., 87, 30001, 10.1209/0295-5075/87/30001
Rong, 2010, Feedback reciprocity mechanism promotes the cooperation of highly clustered scale-free networks, Phys. Rev. E, 82, 047101, 10.1103/PhysRevE.82.047101
Gao, 2010, Diversity of contribution promotes cooperation in public goods games, Phys. A, 389, 3166, 10.1016/j.physa.2010.04.018
Vukov, 2011, Escaping the tragedy of the commons via directed investments, J. Theoret. Biol., 287, 37, 10.1016/j.jtbi.2011.07.022
Szolnoki, 2011, Group-size effects on the evolution of cooperation in the spatial public goods game, Phys. Rev. E, 84, 047102, 10.1103/PhysRevE.84.047102
Perc, 2013, Collective behavior and evolutionary games – an introduction, Chaos Solitons Fractals, 56, 1, 10.1016/j.chaos.2013.06.002
Szolnoki, 2009, Topology-independent impact of noise on cooperation in spatial public goods games, Phys. Rev. E, 80, 056109, 10.1103/PhysRevE.80.056109
Szolnoki, 2013, Correlation of positive and negative reciprocity fails to confer an evolutionary advantage: Phase transitions to elementary strategies, Phys. Rev. X, 3, 041021
Helbing, 2010, Evolutionary establishment of moral and double moral standards through spatial interactions, PLOS Comput. Biol., 6, 10.1371/journal.pcbi.1000758
Wang, 2012, Evolution of public cooperation on interdependent networks: the impact of biased utility functions, Europhys. Lett., 97, 48001, 10.1209/0295-5075/97/48001
Wang, 2013, Interdependent network reciprocity in evolutionary games, Sci. Rep., 3, 1183, 10.1038/srep01183
Battiston, 2014, Structural measures for multiplex networks, Phys. Rev. E, 89, 032804, 10.1103/PhysRevE.89.032804
Battiston, 2017, Determinants of public cooperation in multiplex networks, New J. Phys., 19, 073017, 10.1088/1367-2630/aa6ea1
Roca, 2011, Emergence of social cohesion in a model society of greedy, mobile individuals, Proc. Natl. Acad. Sci. USA, 108, 11370, 10.1073/pnas.1101044108
Pichler, 2017, Public goods games on adaptive coevolutionary networks, Chaos, 27, 073107, 10.1063/1.4991679
Ren, 2018, Coevolution of public goods game and networks based on survival of the fittest, PLOS One, 13, 10.1371/journal.pone.0204616
Shen, 2018, Coevolutionary resolution of the public goods dilemma in interdependent structured populations, Europhys. Lett., 124, 48003, 10.1209/0295-5075/124/48003
Perc, 2018, Stability of subsystem solutions in agent-based models, Eur. J. Phys., 39, 014001, 10.1088/1361-6404/aa903d
Javarone, 2016, The role of noise in the spatial public goods game, J. Stat. Mech. Theory Exp., 2016, 073404, 10.1088/1742-5468/2016/07/073404
Zheng, 2007, Cooperative behavior in a model of evolutionary snowdrift games with N-person interactions, Europhys. Lett., 80, 18002, 10.1209/0295-5075/80/18002
Santos, 2012, Dynamics of N-Person snowdrift games in structured populations, J. Theoret. Biol., 315, 81, 10.1016/j.jtbi.2012.09.001
Ji, 2011, Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors, Appl. Phys. Lett., 98, 103509, 10.1063/1.3564882
Pacheco, 2009, Evolutionary dynamics of collective action in N-Person stag hunt dilemmas, Proc. R. Soc. B Biol. Sci., 276, 315, 10.1098/rspb.2008.1126
Souza, 2009, Evolution of cooperation under N-Person snowdrift games, J. Theoret. Biol., 260, 581, 10.1016/j.jtbi.2009.07.010
Santos, 2011, Risk of collective failure provides an escape from the tragedy of the commons, Proc. Natl. Acad. Sci. USA, 108, 10421, 10.1073/pnas.1015648108
Chen, 2017, Evolutionary dynamics of N-Person Hawk-Dove games, Sci. Rep., 7, 1
Güth, 1982, An experimental analysis of ultimatum bargaining, J. Econ. Behav. Organiz., 3, 367, 10.1016/0167-2681(82)90011-7
Sinatra, 2009, The ultimatum game in complex networks, J. Stat. Mech. Theory Exp., 2009, P09012, 10.1088/1742-5468/2009/09/P09012
Santos, 2015, Evolutionary dynamics of group fairness, J. Theoret. Biol., 378, 96, 10.1016/j.jtbi.2015.04.025
Gomez-Gardeñes, 2011, Evolutionary games defined at the network mesoscale: the public goods game, Chaos Interdiscip. J. Nonlinear Sci., 21, 016113, 10.1063/1.3535579
Gómez-Gardeñes, 2011, Disentangling social and group heterogeneities: public goods games on complex networks, Europhys. Lett., 95, 68003, 10.1209/0295-5075/95/68003
Peña, 2012, Bipartite graphs as models of population structures in evolutionary multiplayer games, PLOS ONE, 7, 10.1371/journal.pone.0044514
Gracia-Lazaro, 2014, Intergroup information exchange drives cooperation in the public goods game, Phys. Rev. E, 90, 042808, 10.1103/PhysRevE.90.042808
Alvarez-Rodriguez, 2020
Baronchelli, 2006, Sharp transition towards shared vocabularies in multi-agent systems, J. Stat. Mech. Theory Exp., 2006, P06014, 10.1088/1742-5468/2006/06/P06014
Baronchelli, 2006, Topology-induced coarsening in language games, Phys. Rev. E, 73, 015102, 10.1103/PhysRevE.73.015102
Gneezy, 2005, Deception: The role of consequences, Amer. Econ. Rev., 95, 384, 10.1257/0002828053828662
Capraro, 2019, The evolution of lying in well-mixed populations, J. R. Soc. Interface, 16, 20190211, 10.1098/rsif.2019.0211
Capraro, 2020, Lying on networks: The role of structure and topology in promoting honesty, Phys. Rev. E, 101, 032305, 10.1103/PhysRevE.101.032305
Milinski, 2008, The collective-risk social dilemma and the prevention of simulated dangerous climate change, Proc. Natl. Acad. Sci. USA, 105, 2291, 10.1073/pnas.0709546105
Freeman, 1980, Q-analysis and the structure of friendship networks, Int. J. Man-Mach. Stud., 12, 367, 10.1016/S0020-7373(80)80021-6
Andjelković, 2015, Hierarchical sequencing of online social graphs, Phys. A, 436, 582, 10.1016/j.physa.2015.05.075
Sekara, 2016, Fundamental structures of dynamic social networks, Proc. Natl. Acad. Sci. USA, 113, 9977, 10.1073/pnas.1602803113
Mangan, 2003, Structure and function of the feed-forward loop network motif, Proc. Natl. Acad. Sci. USA, 100, 11980, 10.1073/pnas.2133841100
Kuzmin, 2018, Systematic analysis of complex genetic interactions, Science, 360, 10.1126/science.aao1729
Schneidman, 2003, Network information and connected correlations, Phys. Rev. Lett., 91, 238701, 10.1103/PhysRevLett.91.238701
Ibáñez-Marcelo, 2019, Topology highlights mesoscopic functional equivalence between imagery and perception: the case of hypnotizability, NeuroImage, 200, 437, 10.1016/j.neuroimage.2019.06.044
McPherson, 1982, Hypernetwork sampling: duality and differentiation among voluntary organizations, Soc. Netw., 3, 225, 10.1016/0378-8733(82)90001-6
Foster, 1982, Urban structures derived from collections of overlapping subsets, Urban Anthropol., 11, 177
Foster, 1984, Overlap structure of ceremonial events in two Thai villages, Thail. J. Dev. Adm., 24, 143
Faust, 1997, Centrality in affiliation networks, Soc. Netw., 19, 157, 10.1016/S0378-8733(96)00300-0
Bonacich, 1987, Power and centrality: A family of measures, Am. J. Sociol., 92, 1170, 10.1086/228631
Wylie, 1976, Mathematical structure in human affairs, by R. H. Atkin, Math. Gaz., 60, 69, 10.2307/3615655
Doreian, 1979, On the evolution of group and network structure, Soc. Netw., 2, 235, 10.1016/0378-8733(79)90016-9
Lehmann, 2019
Karsai, 2017, Bursty human dynamics
Gould, 1979, A structural analysis of a game: The Liverpool v Manchester united cup final of 1977, Soc. Netw., 2, 253, 10.1016/0378-8733(79)90017-0
Pappalardo, 2019, A public data set of spatio-temporal match events in soccer competitions, Sci. Data, 6, 236, 10.1038/s41597-019-0247-7
Gao, 2018, Studying the utility preservation in social network anonymization via persistent homology, Comput. Secur., 77, 49, 10.1016/j.cose.2018.04.003
Greening, 2015, Higher-order interactions: understanding the knowledge capacity of social groups using simplicial sets, Current Zoology, 61, 114, 10.1093/czoolo/61.1.114
Catutto, 2007, Network properties of folksonomies, AI Commun. J. Spec. Issue Netw. Anal. Nat. Sci. Eng.
Latora, 2013, Social cohesion, structural holes, and a tale of two measures, J. Stat. Phys., 745, 10.1007/s10955-013-0722-z
Milojević, 2014, Principles of scientific research team formation and evolution, Proc. Natl. Acad. Sci. USA, 111, 3984, 10.1073/pnas.1309723111
Xiao, 2016, Node importance measure for scientific research collaboration from hypernetwork perspective, Teh. Vjesn., 23, 397
Newman, 2001, Scientific collaboration networks. I. Network construction and fundamental results, Phys. Rev. E, 64, 016131, 10.1103/PhysRevE.64.016131
Newman, 2001, Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality, Phys. Rev. E, 64, 016132, 10.1103/PhysRevE.64.016132
Newman, 2001, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, 98, 404, 10.1073/pnas.98.2.404
Bianconi, 2014, Triadic closure as a basic generating mechanism of communities in complex networks, Phys. Rev. E, 90, 042806, 10.1103/PhysRevE.90.042806
Schneidman, 2006, Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, 440, 1007, 10.1038/nature04701
Yu, 2011, Higher-order interactions characterized in cortical activity, J. Neurosci., 31, 17514, 10.1523/JNEUROSCI.3127-11.2011
Shimazaki, 2012, State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data, PLOS Comput. Biol., 8, 10.1371/journal.pcbi.1002385
Köster, 2014, Modeling higher-order correlations within cortical microcolumns, PLOS Comput. Biol., 10, 10.1371/journal.pcbi.1003684
Shimazaki, 2015, Simultaneous silence organizes structured higher-order interactions in neural populations, Sci. Rep., 5, 9821, 10.1038/srep09821
Cayco-Gajic, 2015, Triplet correlations among similarly tuned cells impact population coding, Front. Comput. Neurosci., 9, 57, 10.3389/fncom.2015.00057
Arenzon, 1993, Neural networks with high-order connections, Phys. Rev. E, 48, 4060, 10.1103/PhysRevE.48.4060
Lemke, 1995, Chaotic dynamics of high-order neural networks, J. Stat. Phys., 79, 415, 10.1007/BF02179396
Ezaki, 2017, Energy landscape analysis of neuroimaging data, Phil. Trans. R. Soc. A, 375, 20160287, 10.1098/rsta.2016.0287
Watanabe, 2014, Energy landscapes of resting-state brain networks, Front. Neuroinform., 8, 12, 10.3389/fninf.2014.00012
Giusti, 2015, Clique topology reveals intrinsic geometric structure in neural correlations, Proc. Natl. Acad. Sci. USA, 112, 13455, 10.1073/pnas.1506407112
Dabaghian, 2012, A topological paradigm for hippocampal spatial map formation using persistent homology, PLOS Comput. Biol., 8, 10.1371/journal.pcbi.1002581
Dabaghian, 2014, Reconceiving the hippocampal map as a topological template, Elife, 3, 10.7554/eLife.03476
Babichev, 2018, Robust spatial memory maps encoded by networks with transient connections, PLOS Comput. Biol., 14, 10.1371/journal.pcbi.1006433
Reimann, 2017, Cliques of neurons bound into cavities provide a missing link between structure and function, Front. Comput. Neurosci., 11, 48, 10.3389/fncom.2017.00048
de Vico Fallani, 2014, Graph analysis of functional brain networks: practical issues in translational neuroscience, Philos. Trans. R. Soc. B, 369, 20130521, 10.1098/rstb.2013.0521
Huang, 2017, Weak higher-order interactions in macroscopic functional networks of the resting brain, J. Neurosci., 37, 10481, 10.1523/JNEUROSCI.0451-17.2017
Zhang, 2017, Test-retest reliability of “high-order” functional connectivity in Young healthy adults, Front. Neurosci., 11, 439, 10.3389/fnins.2017.00439
Plis, 2014, High-order interactions observed in multi-task intrinsic networks are dominant indicators of aberrant brain function in schizophrenia, Neuroimage, 102, 35, 10.1016/j.neuroimage.2013.07.041
Zhang, 2016, Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment, J. Alzheimers Dis., 54, 1095, 10.3233/JAD-160092
Lee, 2017, Integrated multimodal network approach to PET and MRI based on multidimensional persistent homology, Hum. Brain Mapp., 38, 1387, 10.1002/hbm.23461
Lee, 2014, Hole detection in metabolic connectivity of Alzheimer’s disease using k- Laplacian, 297
Bendich, 2016, Persistent homology analysis of brain artery trees, Ann. Appl. Stat., 10, 198, 10.1214/15-AOAS886
Lee, 2012, Persistent brain network homology from the perspective of dendrogram, IEEE Trans. Med. Imaging, 31, 2267, 10.1109/TMI.2012.2219590
Lee, 2011, Discriminative persistent homology of brain networks, 841
Santos, 2019, Topological phase transitions in functional brain networks, Physical Review E, 100, 032414, 10.1103/PhysRevE.100.032414
Chung, 2017, Exact topological inference for paired brain networks via persistent homology, 299
Rybakken, 2019, Decoding of neural data using cohomological feature extraction, Neural Comput., 31, 68, 10.1162/neco_a_01150
Lord, 2016, Insights into brain architectures from the homological scaffolds of functional connectivity networks, Front. Syst. Neurosci., 10, 85, 10.3389/fnsys.2016.00085
Lee, 2019, Harmonic holes as the submodules of brain network and network dissimilarity, 110
Chung, 2019, Exact topological inference of the resting-state brain networks in twins, Netw. Neurosci., 3, 674, 10.1162/netn_a_00091
Ibáñez-Marcelo, 2019, Spectral and topological analyses of the cortical representation of the head position: Does hypnotizability matter?, Brain Behav., 9, 10.1002/brb3.1277
Saggar, 2018, Towards a new approach to reveal dynamical organization of the brain using topological data analysis, Nature Commun., 9, 1, 10.1038/s41467-018-03664-4
Ellis, 2019, Feasibility of topological data analysis for event-related fMRI, Netw. Neurosci., 3, 695, 10.1162/netn_a_00095
Giusti, 2016, Two’s company, three (or more) is a simplex, J. Comput. Neurosci., 41, 1, 10.1007/s10827-016-0608-6
Sizemore, 2019, The importance of the whole: Topological data analysis for the network neuroscientist, Netw. Neurosci., 3, 656, 10.1162/netn_a_00073
Case, 1981, Testing for higher order interactions, Am. Nat., 118, 920, 10.1086/283885
Abrams, 1983, Arguments in favor of higher order interactions, Am. Nat., 121, 887, 10.1086/284111
Kareiva, 1994, Special feature: higher order interactions as a foil to reductionist ecology, Ecology, 75, 10.2307/1939613
Billick, 1994, Higher order interactions in ecological communities: What are they and how can they be detected?, Ecology, 75, 1529, 10.2307/1939614
Wootton, 1993, Indirect effects and habitat use in an intertidal community: Interaction chains and interaction modifications, Am. Nat., 141, 71, 10.1086/285461
Bairey, 2017, High-order species interactions shape ecosystem diversity, Nature Commun., 7, 12285, 10.1038/ncomms12285
Kelsic, 2015, Counteraction of antibiotic production and degradation stabilizes microbial communities, Nature, 521, 516, 10.1038/nature14485
Perlin, 2009, Protection of Salmonella by ampicillin-resistant Escherichia coli in the presence of otherwise lethal drug concentrations, Proc. R. Soc. B Biol. Sci., 276, 3759, 10.1098/rspb.2009.0997
Abrudan, 2015, Socially mediated induction and suppression of antibiosis during bacterial coexistence, Proc. Natl. Acad. Sci. USA, 112, 11054, 10.1073/pnas.1504076112
Koen-Alonso, 2007, A process-oriented approach to the multispecies functional response, 1
de Oliveira, 2000, Random replicators with high-order interactions, Phys. Rev. Lett., 85, 4984, 10.1103/PhysRevLett.85.4984
Yoshino, 2008, Rank abundance relations in evolutionary dynamics of random replicators, Phys. Rev. E, 78, 031924, 10.1103/PhysRevE.78.031924
Sonntag, 2004, Competition hypergraphs, Discrete Appl. Math., 143, 324, 10.1016/j.dam.2004.02.010
Golubski, 2016, Ecological networks over the edge: Hypergraph trait-mediated indirect interaction (TMII) structure, Trends Ecol. Evol., 31, 344, 10.1016/j.tree.2016.02.006
May, 1972, Will a large complex system be stable?, Nature, 436, 413, 10.1038/238413a0
Vandermeer, 1969, The competitive structure of communities: An experimental approach with protozoa, Ecology, 50, 362, 10.2307/1933884
Neill, 1974, The community matrix and interdependence of the competition coefficients, Am. Nat., 108, 399, 10.1086/282922
Dormann, 2005, Experimental evidence rejects pairwise modelling approach to coexistence in plant communities, Proc. Biol. Sci., 272, 1279, 10.1098/rspb.2005.3066
Weigelt, 2007, Identifying mechanisms of competition in multi-species communities, J. Ecol., 95, 53, 10.1111/j.1365-2745.2006.01198.x
Allesina, 2011, A competitive network theory of species diversity, Proc. Natl. Acad. Sci. USA, 108, 5638, 10.1073/pnas.1014428108
Kerr, 2002, Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors, Nature, 418, 171, 10.1038/nature00823
Hofbauer, 2003, Evolutionary game dynamics, Bull. Amer. Math. Soc., 40, 479, 10.1090/S0273-0979-03-00988-1
Nowak, 2004, Evolutionary dynamics of biological games, Science, 303, 793, 10.1126/science.1093411
Taylor, 1978, Evolutionary stable strategies and game dynamics, Math. Biosci., 40, 145, 10.1016/0025-5564(78)90077-9
Hofbauer, 2010
Mayfield, 2017, Higher-order interactions capture unexplained complexity in diverse communities, Nat. Ecol. Evol., 1, 0062, 10.1038/s41559-016-0062
Valverde, 2020, Coexistence of nestedness and modularity in host–pathogen infection networks, Nat. Ecol. Evol., 1
Mariani, 2019, Nestedness in complex networks: Observation, emergence, and implications, Phys. Rev.
Oltvai, 2002, Life’s complexity pyramid, Science, 298, 763, 10.1126/science.1078563
Aittokallio, 2006, Graph-based methods for analysing networks in cell biology, Brief. Bioinform., 7, 243, 10.1093/bib/bbl022
Vermeulen, 2020, The exposome and health: where chemistry meets biology, Science, 367, 392, 10.1126/science.aay3164
Ruepp, 2010, CORUM: The comprehensive resource of mammalian protein complexes—2009, Nucl. Acids Res., 38, D497, 10.1093/nar/gkp914
Wong, 2008, An evolutionary and structural characterization of mammalian protein complex organization, BMC Genomics, 9, 629, 10.1186/1471-2164-9-629
Klamt, 2009, Hypergraphs and cellular networks, PLOS Comput. Biol., 5, 10.1371/journal.pcbi.1000385
Ritz, 2014, Signaling hypergraphs, Trends Biotechnol., 32, 356, 10.1016/j.tibtech.2014.04.007
Gaudelet, 2018, Higher-order molecular organization as a source of biological function, Bioinformatics, 34, i944, 10.1093/bioinformatics/bty570
Pržulj, 2004, Modeling interactome: scale-free or geometric?, Bioinformatics, 20, 3508, 10.1093/bioinformatics/bth436
Franzese, 2019, Hypergraph-based connectivity measures for signaling pathway topologies, PLOS Comput. Biol., 15, 10.1371/journal.pcbi.1007384
Klimm, 2020, Hypergraphs for predicting essential genes using multiprotein complex data, bioRxiv
Pearcy, 2016, Complexity and robustness in hypernetwork models of metabolism, J. Theoret. Biol., 406, 99, 10.1016/j.jtbi.2016.06.032
Shen, 2018, A genome-scale metabolic network alignment method within a hypergraph-based framework using a rotational tensor-vector product, Sci. Rep., 8, 1, 10.1038/s41598-018-34692-1
Jost, 2019, Hypergraph Laplace operators for chemical reaction networks, Adv. Math., 351, 870, 10.1016/j.aim.2019.05.025
Tian, 2009, A hypergraph-based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge, Bioinformatics, 25, 2831, 10.1093/bioinformatics/btp467
Battle, 2010, Automated identification of pathways from quantitative genetic interaction data, Mol. Syst. Biol., 6, 10.1038/msb.2010.27
Sumazin, 2011, An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma, Cell, 147, 370, 10.1016/j.cell.2011.09.041
Rahman, 2013, Reverse engineering molecular hypergraphs, IEEE/ACM Trans. Comput. Biol. Bioinform., 10, 1113, 10.1109/TCBB.2013.71
Marques-Pita, 2013, Canalization and control in automata networks: body segmentation in drosophila melanogaster, PLOS ONE, 8, 10.1371/journal.pone.0055946
Kong, 2019, A hypergraph-based method for large-scale dynamic correlation study at the transcriptomic scale, BMC Genomics, 20, 397, 10.1186/s12864-019-5787-x
Zimmer, 2016, Prediction of multidimensional drug dose responses based on measurements of drug pairs, Proc. Natl. Acad. Sci. USA, 113, 10442, 10.1073/pnas.1606301113
Katzir, 2019, Prediction of ultra-high-order antibiotic combinations based on pairwise interactions, PLOS Comput. Biol., 15, 10.1371/journal.pcbi.1006774
Tendler, 2019, Noise-precision tradeoff in predicting combinations of mutations and drugs, PLOS Comput. Biol., 15, 10.1371/journal.pcbi.1006956
Zimmer, 2017, Prediction of drug cocktail effects when the number of measurements is limited, PLoS Biol., 15, 10.1371/journal.pbio.2002518
Otwinowski, 2014, Inferring fitness landscapes by regression produces biased estimates of epistasis, Proc. Natl. Acad. Sci. USA, 111, E2301, 10.1073/pnas.1400849111
Crona, 2017, Inferring genetic interactions from comparative fitness data, Elife, 6, 10.7554/eLife.28629
Weinreich, 2013, Should evolutionary geneticists worry about higher-order epistasis?, Curr. Opin. Genet. Dev., 23, 700, 10.1016/j.gde.2013.10.007
Mackay, 2014, Why epistasis is important for tackling complex human disease genetics, Genome Med., 6, 42, 10.1186/gm561
Sanchez, 2019, Defining higher-order interactions in synthetic ecology: lessons from physics and quantitative genetics, Cell Syst., 9, 519, 10.1016/j.cels.2019.11.009
Guerrero, 2019, Proteostasis environment shapes higher-order epistasis operating on antibiotic resistance, Genetics, 212, 565, 10.1534/genetics.119.302138
Yitbarek, 2019, Deconstructing higher-order interactions in the microbiota: A theoretical examination, bioRxiv, 647156
Mickalide, 2019, Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator microbial community, Cell Syst., 9, 521, 10.1016/j.cels.2019.11.004
Niu, 2019, RWHMDA: random walk on hypergraph for microbe-disease association prediction, Front. Microbiol., 10, 1578, 10.3389/fmicb.2019.01578
St-Onge, 2020
Pokorny, 2016, Topological trajectory classification with filtrations of simplicial complexes and persistent homology, Int. J. Robot. Res., 35, 204, 10.1177/0278364915586713
Herlihy, 2013
É. Goubault, J. Ledent, S. Rajsbaum, A simplicial complex model for dynamic epistemic logic to study distributed task computability, in: Proceedings Ninth International Symposium on Games, Automata, Logics, and Formal Verification, 2018.
van Ditmarsch, 2020
Reitz, 2020
Kališnik, 2019, A higher-dimensional homologically persistent skeleton, Adv. Appl. Math., 102, 113, 10.1016/j.aam.2018.07.004
Guerra, 2020
Karypis, 1999, Multilevel hypergraph partitioning: Applications in VLSI domain, IEEE Trans. Very Large Scale Integr. VLSI Syst., 7, 69, 10.1109/92.748202
Neubauer, 2009, Towards community detection in k-partite k-uniform hypergraphs, 1
Marietti, 2008, Cores of simplicial complexes, Discrete Comput. Geom., 40, 444, 10.1007/s00454-008-9081-y
Duval, 2013, Critical groups of simplicial complexes, Ann. Comb., 17, 53, 10.1007/s00026-012-0168-z
Steenbergen, 2014, A Cheeger-type inequality on simplicial complexes, Adv. Appl. Math., 56, 56, 10.1016/j.aam.2014.01.002
Parzanchevski, 2017, Mixing in high-dimensional expanders, Combin. Probab. Comput., 26, 746, 10.1017/S0963548317000116
Sizemore, 2017, Classification of weighted networks through mesoscale homological features, J. Complex Netw., 5, 245
Petri, 2013, Topological strata of weighted complex networks, PLOS ONE, 8, 10.1371/journal.pone.0066506
Bobrowski, 2020, Homological percolation and the euler characteristic, Phys. Rev. E, 101, 032304, 10.1103/PhysRevE.101.032304
Brugere, 2018, Network structure inference,a survey: Motivations,methods,and applications, ACM Comput. Surv., 51, 24:1, 10.1145/3154524
Peixoto, 2019, Network reconstruction and community detection from dynamics, Phys. Rev. Lett., 123, 128301, 10.1103/PhysRevLett.123.128301
Squartini, 2018, Reconstruction methods for networks: the case of economic and financial systems, Phys. Rep., 757, 1, 10.1016/j.physrep.2018.06.008
Phinyomark, 2017, Resting-state fmri functional connectivity: Big data preprocessing pipelines and topological data analysis, IEEE Trans. Big Data, 3, 415, 10.1109/TBDATA.2017.2734883
Battiston, 2010, The structure of financial networks, 131
Faes, 2015, Estimating the decomposition of predictive information in multivariate systems, Phys. Rev. E, 91, 032904, 10.1103/PhysRevE.91.032904
Faes, 2017, Multiscale information decomposition: Exact computation for multivariate Gaussian processes, Entropy, 19, 408, 10.3390/e19080408
Rosas, 2019, Quantifying high-order interdependencies via multivariate extensions of the mutual information, Phys. Rev. E, 100, 032305, 10.1103/PhysRevE.100.032305
Hébert-Dufresne, 2020, Macroscopic patterns of interacting contagions are indistinguishable from social reinforcement, Nat. Phys., 1