Networks beyond pairwise interactions: Structure and dynamics

Physics Reports - Tập 874 - Trang 1-92 - 2020
Federico Battiston1, Giulia Cencetti2, Iacopo Iacopini3,4, Vito Latora3,5,6,7, Maxime Lucas8,9,10, Alice Patania11, Jean-Gabriel Young12, Giovanni Petri13,14
1Department of Network and Data Science, Central European University, Budapest 1051, Hungary
2Mobs Lab, Fondazione Bruno Kessler, Via Sommarive 18, 38123, Povo, TN, Italy
3School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
4Centre for Advanced Spatial Analysis, University College London, London, W1T 4TJ, United Kingdom
5Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, I-95123 Catania, Italy
6The Alan Turing Institute, The British Library, London NW1 2DB, United Kingdom
7Complexity Science Hub Vienna (CSHV), Vienna, Austria
8Aix Marseille Univ, CNRS, CPT, Turing Center for Living Systems, Marseille, France
9Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
10Aix Marseille Univ, CNRS, Centrale Marseille, I2M, Turing Center for Living Systems, Marseille, France
11Network Science Institute, Indiana University, Bloomington, IN, USA
12Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI, 48109, USA
13ISI Foundation, via Chisola 5, 10126 Turin, Italy
14ISI Global Science Foundation, 33 W 42nd St, 10036 New York, NY, USA

Tài liệu tham khảo

Anderson, 1972, More is different, Science, 177, 393, 10.1126/science.177.4047.393 Barabási, 2011, The network takeover, Nat. Phys., 8, 14, 10.1038/nphys2188 Vespignani, 2012, Modelling dynamical processes in complex socio-technical systems, Nat. Phys., 8, 32, 10.1038/nphys2160 Boguna, 2020 Watts, 1998, Collective dynamics of ‘small-world’ networks, Nature, 393, 440, 10.1038/30918 Barabási, 1999, Emergence of scaling in random networks, Science, 286, 509, 10.1126/science.286.5439.509 Bollobás, 2001 Lovász, 2012 Albert, 2002, Statistical mechanics of complex networks, Rev. Modern Phys., 74, 47, 10.1103/RevModPhys.74.47 Cimini, 2019, The statistical physics of real-world networks, Nat. Rev. Phys., 1, 58, 10.1038/s42254-018-0002-6 Dorogovtsev, 2002, Evolution of networks, Adv. Phys., 51, 1079, 10.1080/00018730110112519 Newman, 2003, The structure and function of complex networks, SIAM Rev., 45, 167, 10.1137/S003614450342480 Boccaletti, 2006, Complex networks: Structure and dynamics, Phys. Rep., 424, 175, 10.1016/j.physrep.2005.10.009 Caldarelli, 2007 Barrat, 2008 Newman, 2010 Estrada, 2011 Barabási, 2016 Latora, 2017 Menczer, 2020 Butts, 2009, Revisiting the foundations of network analysis, Science, 325, 414, 10.1126/science.1171022 Holme, 2012, Temporal networks, Phys. Rep., 519, 97, 10.1016/j.physrep.2012.03.001 Boccaletti, 2014, The structure and dynamics of multilayer networks, Phys. Rep., 544, 1, 10.1016/j.physrep.2014.07.001 Benson, 2016, Higher-order organization of complex networks, Science, 353, 163, 10.1126/science.aad9029 Petri, 2014, Homological scaffolds of brain functional networks, J. R. Soc. Interface, 11, 20140873, 10.1098/rsif.2014.0873 Sizemore, 2018, Cliques and cavities in the human connectome, J. Comput. Neurosci., 44, 115, 10.1007/s10827-017-0672-6 Grilli, 2017, Higher-order interactions stabilize dynamics in competitive network models, Nature, 548, 210, 10.1038/nature23273 Sanchez-Gorostiaga, 2018, High-order interactions dominate the functional landscape of microbial consortia, bioRxiv, 333534 Ganmor, 2011, Sparse low-order interaction network underlies a highly correlated and learnable neural population code, Proc. Natl. Acad. Sci. USA, 108, 9679, 10.1073/pnas.1019641108 Levine, 2017, Beyond pairwise mechanisms of species coexistence in complex communities, Nature, 546, 56, 10.1038/nature22898 Benson, 2018, Simplicial closure and higher-order link prediction, Proc. Natl. Acad. Sci. USA, 115, E11221, 10.1073/pnas.1800683115 Centola, 2010, The spread of behavior in an online social network experiment, Science, 329, 1194, 10.1126/science.1185231 Newman, 2001, Random graphs with arbitrary degree distributions and their applications, Phys. Rev. E, 64, 026118, 10.1103/PhysRevE.64.026118 Atkin, 1972, From cohomology in physics to Q-connectivity in social science, Int. J. Man-Mach. Stud., 4, 139, 10.1016/S0020-7373(72)80029-4 Berge, 1973 Atkin, 1974 Kivelä, 2014, Multilayer networks, J Comp. Netw., 2, 203, 10.1093/comnet/cnu016 De Domenico, 2016, The physics of spreading processes in multilayer networks, Nat. Phys., 12, 901, 10.1038/nphys3865 Battiston, 2017, The new challenges of multiplex networks: Measures and models, Eur. Phys. J. Spec. Top., 226, 401, 10.1140/epjst/e2016-60274-8 Bianconi, 2018 Aleta, 2019, Multilayer networks in a nutshell, Annu. Rev. Condens. Matter Phys., 10, 45, 10.1146/annurev-conmatphys-031218-013259 Holme, 2013 Holme, 2015, Modern temporal network theory: A colloquium, Eur. Phys. J. B, 88, 234, 10.1140/epjb/e2015-60657-4 Lambiotte, 2019, From networks to optimal higher-order models of complex systems, Nat. Phys., 1 Bondy, 1976 Alon, 2003, Biological networks: The tinkerer as an engineer, Science, 301, 1866, 10.1126/science.1089072 Kashtan, 2005, Spontaneous evolution of modularity and network motifs, Proc. Natl. Acad. Sci. USA, 102, 13773, 10.1073/pnas.0503610102 Montoya, 2006, Ecological networks and their fragility, Nature, 442, 259, 10.1038/nature04927 Borgatti, 2009, Network analysis in the social sciences, Science, 323, 892, 10.1126/science.1165821 McPherson, 2001, Birds of a feather: Homophily in social networks, Annu. Rev. Sociol., 27, 415, 10.1146/annurev.soc.27.1.415 Gao, 2012, Networks formed from interdependent networks, Nat. Phys., 8, 40, 10.1038/nphys2180 Buldyrev, 2010, Catastrophic cascade of failures in interdependent networks, Nature, 464, 1025, 10.1038/nature08932 Bullmore, 2009, Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci., 10, 186, 10.1038/nrn2575 Bassett, 2017, Network neuroscience, Nat. Neurosci., 20, 353, 10.1038/nn.4502 Medaglia, 2015, Cognitive network neuroscience, J. Cogn. Neurosci., 27, 1471, 10.1162/jocn_a_00810 Boguñá, 2014, Cosmological networks, New J. Phys., 16, 093031, 10.1088/1367-2630/16/9/093031 Fortunato, 2010, Community detection in graphs, Phys. Rep., 486, 75, 10.1016/j.physrep.2009.11.002 Palla, 2005, Uncovering the overlapping community structure of complex networks in nature and society, Nature, 435, 814, 10.1038/nature03607 Karrer, 2011, Stochastic blockmodels and community structure in networks, Phys. Rev. E, 83, 016107, 10.1103/PhysRevE.83.016107 Lancichinetti, 2011, Limits of modularity maximization in community detection, Phys. Rev. E, 84, 066122, 10.1103/PhysRevE.84.066122 Abbe, 2015, Community detection in general stochastic block models: Fundamental limits and efficient algorithms for recovery, 670 Lancichinetti, 2008, Benchmark graphs for testing community detection algorithms, Phys. Rev. E, 78, 046110, 10.1103/PhysRevE.78.046110 Guillaume, 2004, Bipartite structure of all complex networks, Inf. Process Lett., 90, 215, 10.1016/j.ipl.2004.03.007 Guillaume, 2006, Bipartite graphs as models of complex networks, Physica A, 371, 795, 10.1016/j.physa.2006.04.047 Wasserman, 1994 Newman, 2002, Random graph models of social networks, Proc. Natl. Acad. Sci. USA, 99, 2566, 10.1073/pnas.012582999 Guimerà, 2007, Module identification in bipartite and directed networks, Phys. Rev. E, 76, 036102, 10.1103/PhysRevE.76.036102 Zhou, 2007, Bipartite network projection and personal recommendation, Phys. Rev. E, 76, 046115, 10.1103/PhysRevE.76.046115 Zweig, 2011, A systematic approach to the one-mode projection of bipartite graphs, Soc. Netw. Anal. Min., 1, 187, 10.1007/s13278-011-0021-0 Schaub, 2018, Flow smoothing and denoising: Graph signal processing in the edge-space, 735 Milo, 2002, Network motifs: Simple building blocks of complex networks, Science, 298, 824, 10.1126/science.298.5594.824 Alon, 2007, Network motifs: Theory and experimental approaches, Nat. Rev. Genet., 8, 450, 10.1038/nrg2102 Morgan, 2018, Low-dimensional morphospace of topological motifs in human fMRI brain networks, Netw. Neurosci., 2, 285, 10.1162/netn_a_00038 Avena-Koenigsberger, 2015, Network morphospace, J. R. Soc. Interface, 12, 20140881, 10.1098/rsif.2014.0881 Shen-Orr, 2002, Network motifs in the transcriptional regulation network of Escherichia coli, Nat. Genet., 31, 64, 10.1038/ng881 Fowler, 2009, Model of genetic variation in human social networks, Proc. Natl. Acad. Sci. USA, 106, 1720, 10.1073/pnas.0806746106 Paranjape, 2017, Motifs in temporal networks, 601 Kovanen, 2011, Temporal motifs in time-dependent networks, J. Stat. Mech. Theory Exp., 2011, P11005, 10.1088/1742-5468/2011/11/P11005 Mahadevan, 2006, Systematic topology analysis and generation using degree correlations, 135 Orsini, 2015, Quantifying randomness in real networks, Nature Commun., 6, 8627, 10.1038/ncomms9627 Derényi, 2005, Clique percolation in random networks, Phys. Rev. Lett., 94, 160202, 10.1103/PhysRevLett.94.160202 Dunbar, 1995, Social networks, support cliques, and kinship, Hum. Nat., 6, 273, 10.1007/BF02734142 Provan, 1998, Networks within networks: Service link overlap, organizational cliques, and network effectiveness, Acad. Manage. J., 41, 453, 10.2307/257084 Hatcher, 2002 Horak, 2013, Spectra of combinatorial Laplace operators on simplicial complexes, Adv. Math., 244, 303, 10.1016/j.aim.2013.05.007 Muhammad, 2006, Control using higher order Laplacians in network topologies, 1024 Costa, 2016, Random simplicial complexes, 129 Bianconi, 2016, Network geometry with flavor: From complexity to quantum geometry, Phys. Rev. E, 93, 032315, 10.1103/PhysRevE.93.032315 Ghrist, 2014 Carlsson, 2009, Topology and data, Bull. Amer. Math. Soc., 46, 255, 10.1090/S0273-0979-09-01249-X Patania, 2017, Topological analysis of data, EPJ Data Sci., 6, 7, 10.1140/epjds/s13688-017-0104-x Expert, 2019, Editorial: Topological neuroscience, Netw. Neurosci., 3, 653, 10.1162/netn_e_00096 Higuchi, 1999 Louis, 2015, Hypergraph Markov operators, eigenvalues and approximation algorithms, 713 Chan, 2018, Spectral properties of hypergraph Laplacian and approximation algorithms, J. ACM JACM, 65, 15 Chan, 2019, Generalizing the hypergraph Laplacian via a diffusion process with mediators, Theoret. Comput. Sci. Ghoshal, 2009, Random hypergraphs and their applications, Phys. Rev. E, 79, 066118, 10.1103/PhysRevE.79.066118 Kumar, 2018 Chodrow, 2020, Annotated hypergraphs: Models and applications, Appl. Netw. Sci., 5, 9, 10.1007/s41109-020-0252-y Torres, 2020 Estrada, 2005 Kamiński, 2019, Clustering via hypergraph modularity, PLoS One, 14, 10.1371/journal.pone.0224307 Zhou, 2007, Learning with hypergraphs: Clustering, classification, and embedding, 1601 Chodrow, 2019 Rodriguez, 2003, On the Laplacian spectrum and walk-regular hypergraphs, Linear Multilinear Algebra, 51, 285, 10.1080/0308108031000084374 A. Bellaachia, M. Al-Dhelaan, Random walks in hypergraph, in: Proceedings of the 2013 International Conference on Applied Mathematics and Computational Methods, Venice Italy, 2013, pp. 187–194. Avin, 2010, Radio cover time in hyper-graphs, 3 Young, 2017, Construction of and efficient sampling from the simplicial configuration model, Phys. Rev. E, 96, 032312, 10.1103/PhysRevE.96.032312 Goldberg, 2002, Combinatorial Laplacians of simplicial complexes, Sr. Thesis Bard Coll. Maletić, 2008, Simplicial complexes of networks and their statistical properties, 568 Duval, 2002, Shifted simplicial complexes are Laplacian integral, Trans. Amer. Math. Soc., 354, 4313, 10.1090/S0002-9947-02-03082-9 Serrano, 2019 Estrada, 2018, Centralities in simplicial complexes. Applications to protein interaction networks, J. Theoret. Biol., 438, 46, 10.1016/j.jtbi.2017.11.003 Courtney, 2016, Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes, Phys. Rev. E, 93, 062311, 10.1103/PhysRevE.93.062311 Patania, 2017, The shape of collaborations, EPJ Data Sci., 6, 18, 10.1140/epjds/s13688-017-0114-8 Kapoor, 2013, Weighted node degree centrality for hypergraphs, 152 Jiang, 2007, Spatial topology and its structural analysis based on the concept of simplicial complex, Trans. GIS, 11, 943, 10.1111/j.1467-9671.2007.01073.x Serrano, 2019 Lu, 2011, High-ordered random walks and generalized Laplacians on hypergraphs, 14 Estrada, 2006, Subgraph centrality and clustering in complex hyper-networks, Physica A, 364, 581, 10.1016/j.physa.2005.12.002 Aksoy, 2020, Hypernetwork science via high-order hypergraph walks, EPJ Data Science, 9, 1, 10.1140/epjds/s13688-020-00231-0 Bonacich, 1972, Factoring and weighting approaches to status scores and clique identification, J. Math. Sociol., 2, 113, 10.1080/0022250X.1972.9989806 Newman, 2006, Modularity and community structure in networks, Proc. Natl. Acad. Sci. USA, 103, 8577, 10.1073/pnas.0601602103 Langville, 2004, Deeper inside pagerank, Internet Math., 1, 335, 10.1080/15427951.2004.10129091 Fletcher, 2018, From structure to activity: Using centrality measures to predict neuronal activity, Int. J. Neural Syst., 28, 1750013, 10.1142/S0129065717500137 Bonacich, 1991, Simultaneous group and individual centralities, Soc. Netw., 13, 155, 10.1016/0378-8733(91)90018-O Bonacich, 2004, Hyper-edges and multidimensional centrality, Soc. Netw., 26, 189, 10.1016/j.socnet.2004.01.001 Benson, 2019, Three hypergraph eigenvector centralities, SIAM J. Math. Data Sci., 1, 293, 10.1137/18M1203031 Qi, 2017 Granovetter, 1977, The strength of weak ties, 347 Opsahl, 2013, Triadic closure in two-mode networks: Redefining the global and local clustering coefficients, Soc. Netw., 35, 159, 10.1016/j.socnet.2011.07.001 Borgatti, 1997, Network analysis of 2-mode data, Soc. Netw., 19, 243, 10.1016/S0378-8733(96)00301-2 Kartun-Giles, 2019, Beyond the clustering coefficient: A topological analysis of node neighbourhoods in complex networks, Chaos Solitons Fractals X, 1, 100004, 10.1016/j.csfx.2019.100004 Yin, 2017, Local higher-order graph clustering, 555 Edelsbrunner, 2014 Ghrist, 2008, Barcodes: The persistent topology of data, Bull. Amer. Math. Soc., 45, 61, 10.1090/S0273-0979-07-01191-3 Verri, 1993, On the use of size functions for shape analysis, Biol. Cybernet., 70, 99, 10.1007/BF00200823 Cagliari, 2001, Size functions from a categorical viewpoint, Acta Appl. Math., 67, 225, 10.1023/A:1011923819754 Edelsbrunner, 2000, Topological persistence and simplification, 454 Zomorodian, 2005, Computing persistent homology, Discrete Comput. Geom., 33, 249, 10.1007/s00454-004-1146-y Feng, 2019 Carlsson, 2010, Zigzag persistence, Found. Comput. Math., 10, 367, 10.1007/s10208-010-9066-0 Carlsson, 2009, The theory of multidimensional persistence, Discrete Comput. Geom., 42, 71, 10.1007/s00454-009-9176-0 Edelsbrunner, 2017, Persistent homology, 637 Otter, 2017, A roadmap for the computation of persistent homology, EPJ Data Sci., 6, 17, 10.1140/epjds/s13688-017-0109-5 Muldoon, 1993, Topology from time series, Physica D, 65, 1, 10.1016/0167-2789(92)00026-U Adler, 2017 Pranav, 2019, Topology and geometry of Gaussian random fields I: On Betti numbers, Euler characteristic, and Minkowski functionals, Mon. Not. R. Astron. Soc., 485, 4167, 10.1093/mnras/stz541 Maletić, 2012, Combinatorial Laplacian and entropy of simplicial complexes associated with complex networks, Eur. Phys. J. ST, 77, 10.1140/epjst/e2012-01655-6 Lim, 2015, Hodge Laplacians on graphs, Proc. Symp. Appl. Math. Parzanchevski, 2017, Simplicial complexes: Spectrum, homology and random walks, Random Struct. Algorithms, 50, 225, 10.1002/rsa.20657 Schaub, 2020, Random walks on simplicial complexes and the normalized Hodge Laplacian, SIAM Rev., 62, 353, 10.1137/18M1201019 Rodriguez, 2009, Laplacian eigenvalues and partition problems in hypergraphs, Appl. Math. Lett., 22, 916, 10.1016/j.aml.2008.07.020 Chung, 1993, The Laplacian of a hypergraph, Expand. Graphs DIMACS Ser., 21, 10.1090/dimacs/010/03 Saito, 2018, Hypergraph p-Laplacian: A differential geometry view Cooper, 2012, Spectra of uniform hypergraphs, Linear Algebra Appl., 436, 3268, 10.1016/j.laa.2011.11.018 Hu, 2015, The Laplacian of a uniform hypergraph, J. Comb. Optim., 29, 331, 10.1007/s10878-013-9596-x Li, 2018, Submodular hypergraphs: P-Laplacians, cheeger inequalities and spectral clustering, 3014 Lucas, 2020 Krioukov, 2013, Duality between equilibrium and growing networks, Phys. Rev. E, 88, 022808, 10.1103/PhysRevE.88.022808 Coolen, 2017 Bianconi, 2003, Number of loops of size h in growing scale-free networks, Phys. Rev. Lett., 90, 078701, 10.1103/PhysRevLett.90.078701 Serrano, 2005, Tuning clustering in random networks with arbitrary degree distributions, Phys. Rev. E, 72, 036133, 10.1103/PhysRevE.72.036133 Bollobás, 1976, Cliques in random graphs, 419 Fosdick, 2018, Configuring random graph models with fixed degree sequences, SIAM Rev., 60, 315, 10.1137/16M1087175 Diamond, 1975, Assembly of species communities, Ecol. Evol. Commun., 342 Connor, 1979, The assembly of species communities: Chance or competition?, Ecology, 60, 1132, 10.2307/1936961 Gail, 1977, Counting the number of r× c contingency tables with fixed margins, J. Am. Stat. Assoc., 72, 859, 10.1080/01621459.1977.10479971 Verbeek, 1985, A survey of algorithms for exact distributions of test statistics in r×c contingency tables with fixed margins, Comput. Statist. Data Anal., 3, 159, 10.1016/0167-9473(85)90080-5 Saracco, 2015, Randomizing bipartite networks: The case of the World Trade Web, Sci. Rep., 5, 10595, 10.1038/srep10595 Payrató-Borràs, 2019, Breaking the spell of nestedness: The entropic origin of nestedness in mutualistic systems, Phys. Rev. X, 9, 031024 Kitsak, 2011, Hidden variables in bipartite networks, Phys. Rev. E, 84, 026114, 10.1103/PhysRevE.84.026114 Boroojeni, 2017, Generating bipartite networks with a prescribed joint degree distribution, J. Complex Netw., 5, 839, 10.1093/comnet/cnx014 Söderberg, 2002, General formalism for inhomogeneous random graphs, Phys. Rev. E, 66, 066121, 10.1103/PhysRevE.66.066121 Allard, 2009, Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics, Phys. Rev. E, 79, 036113, 10.1103/PhysRevE.79.036113 Fu, 2019, Modeling and analysis of tagging networks in stack exchange communities, J. Complex Netw., 10.1093/comnet/cnz045 Wasserman, 1996, Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp, Psychometrika, 61, 401, 10.1007/BF02294547 Snijders, 2006, New specifications for exponential random graph models, Sociol. Methodol., 36, 99, 10.1111/j.1467-9531.2006.00176.x Frank, 1986, Markov graphs, J. Amer. Statist. Assoc., 81, 832, 10.1080/01621459.1986.10478342 Holland, 1981, An exponential family of probability distributions for directed graphs, J. Amer. Statist. Assoc., 76, 33, 10.1080/01621459.1981.10477598 Latapy, 2008, Basic notions for the analysis of large two-mode networks, Soc Netw., 30, 31, 10.1016/j.socnet.2007.04.006 Iacobucci, 1990, Social networks with two sets of actors, Psychometrika, 55, 707, 10.1007/BF02294618 Skvoretz, 1999, Logit models for affiliation networks, Sociol. Methodol., 29, 253, 10.1111/0081-1750.00066 Robins, 2004, Small worlds among interlocking directors: Network structure and distance in bipartite graphs, Comput. Math. Organ. Theory, 10, 69, 10.1023/B:CMOT.0000032580.12184.c0 Agneessens, 2004, Choices of theatre events: P* models for affiliation networks with attributes, Metod. Zv., 1, 419 Strauss, 1986, On a general class of models for interaction, SIAM Rev., 28, 513, 10.1137/1028156 Handcock, 2003, Statistical models for social networks: inference and degeneracy, 229 Fischer, 2015, Sampling motif-constrained ensembles of networks, Phys. Rev. Lett., 115, 188701, 10.1103/PhysRevLett.115.188701 Wang, 2009, Exponential random graph (P*) models for affiliation networks, Soc. Netw., 31, 12, 10.1016/j.socnet.2008.08.002 Wang, 2013, Exponential random graph model specifications for bipartite networks—A dependence hierarchy, Soc. Netw., 35, 211, 10.1016/j.socnet.2011.12.004 Robins, 2007, An introduction to exponential random graph (P*) models for social networks, Soc. Netw., 29, 173, 10.1016/j.socnet.2006.08.002 Smith, 2012, Macrostructure from microstructure: Generating whole systems from ego networks, Sociol. Methodol., 42, 155, 10.1177/0081175012455628 Jasny, 2012, Baseline models for two-mode social network data, Policy Stud. J., 40, 458, 10.1111/j.1541-0072.2012.00461.x Faust, 2002, Scaling and statistical models for affiliation networks: Patterns of participation among Soviet politicians during the Brezhnev era, Soc Netw., 24, 231, 10.1016/S0378-8733(02)00005-9 Snijders, 2002, Markov chain Monte Carlo estimation of exponential random graph models, J. Soc. Struct., 3, 1 Shalizi, 2013, Consistency under sampling of exponential random graph models, Ann. Statist., 41, 508, 10.1214/12-AOS1044 Crane, 2018 Young, 2018, Universality of the stochastic block model, Phys. Rev. E, 98, 032309, 10.1103/PhysRevE.98.032309 Newman, 2012, Communities, modules and large-scale structure in networks, Nat. Phys., 8, 25, 10.1038/nphys2162 Newman, 2003, Mixing patterns in networks, Phys. Rev. E, 67, 026126, 10.1103/PhysRevE.67.026126 Borgatti, 2000, Models of core/periphery structures, Soc. Netw., 21, 375, 10.1016/S0378-8733(99)00019-2 Holland, 1983, Stochastic blockmodels: First steps, Soc. Networks, 5, 109, 10.1016/0378-8733(83)90021-7 Doreian, 2004, Generalized blockmodeling of two-mode network data, Soc. Netw., 26, 29, 10.1016/j.socnet.2004.01.002 Rohe, 2016, Co-clustering directed graphs to discover asymmetries and directional communities, Proc. Natl. Acad. Sci. USA, 113, 12679, 10.1073/pnas.1525793113 Larremore, 2014, Efficiently inferring community structure in bipartite networks, Phys. Rev. E, 90, 012805, 10.1103/PhysRevE.90.012805 Olhede, 2014, Network histograms and universality of blockmodel approximation, Proc. Natl. Acad. Sci. USA, 111, 14722, 10.1073/pnas.1400374111 Peixoto, 2012, Entropy of stochastic blockmodel ensembles, Phys. Rev. E, 85, 056122, 10.1103/PhysRevE.85.056122 Guimerà, 2012, Predicting human preferences using the block structure of complex social networks, PLoS One, 7, 10.1371/journal.pone.0044620 Ball, 2011, Efficient and principled method for detecting communities in networks, Phys. Rev. E, 84, 036103, 10.1103/PhysRevE.84.036103 Hric, 2016, Network structure, metadata, and the prediction of missing nodes and annotations, Phys. Rev. X, 6, 031038 Gerlach, 2018, A network approach to topic models, Sci. Adv., 4, eaaq1360, 10.1126/sciadv.aaq1360 Blei, 2003, Latent Dirichlet allocation, J. Mach. Learn. Res., 3, 993 Sheng, 2003, Biclustering microarray data by Gibbs sampling, Bioinformatics, 19, ii196, 10.1093/bioinformatics/btg1078 Iyer, 2012, Percolation and connectivity in AB random geometric graphs, Adv. Appl. Probab., 44, 21, 10.1239/aap/1331216643 Penrose, 2003 Waxman, 1988, Routing of multipoint connections, IEEE J. Sel. Areas Commun., 6, 1617, 10.1109/49.12889 Serrano, 2008, Self-similarity of complex networks and hidden metric spaces, Phys. Rev. Lett., 100, 078701, 10.1103/PhysRevLett.100.078701 Kitsak, 2017, Latent geometry of bipartite networks, Phys. Rev. E, 95, 032309, 10.1103/PhysRevE.95.032309 Mézard, 2012, Uncovering the hidden geometry behind metabolic networks, Mol. Biosyst., 8, 843, 10.1039/c2mb05306c Krioukov, 2016, Clustering implies geometry in networks, Phys. Rev. Lett., 116, 208302, 10.1103/PhysRevLett.116.208302 Newman, 2003, Properties of highly clustered networks, Phys. Rev. E, 68, 026121, 10.1103/PhysRevE.68.026121 Davis, 1967 Holland, 1976, Local structure in social networks, Sociol. Methodol., 7, 1, 10.2307/270703 Gleeson, 2009, Analytical results for bond percolation and K-Core sizes on clustered networks, Phys. Rev. E, 80, 046121, 10.1103/PhysRevE.80.046121 Trapman, 2007, On analytical approaches to epidemics on networks, Theor. Popul. Biol., 71, 160, 10.1016/j.tpb.2006.11.002 Newman, 2009, Random graphs with clustering, Phys. Rev. Lett., 103, 058701, 10.1103/PhysRevLett.103.058701 Miller, 2009, Percolation and epidemics in random clustered networks, Phys. Rev. E, 80, 020901, 10.1103/PhysRevE.80.020901 Gleeson, 2009, Bond percolation on a class of clustered random networks, Phys. Rev. E, 80, 036107, 10.1103/PhysRevE.80.036107 Karrer, 2010, Random graphs containing arbitrary distributions of subgraphs, Phys. Rev. E, 82, 066118, 10.1103/PhysRevE.82.066118 Allard, 2012, Bond percolation on a class of correlated and clustered random graphs, J. Phys. Math. Theor., 45, 405005, 10.1088/1751-8113/45/40/405005 Allard, 2015, General and exact approach to percolation on random graphs, Phys. Rev. E, 92, 062807, 10.1103/PhysRevE.92.062807 Ritchie, 2017, Generation and analysis of networks with a prescribed degree sequence and subgraph family: Higher-order structure matters, J. Complex Netw., 5, 1 Wegner, 2014, Subgraph covers: An information-theoretic approach to motif analysis in networks, Phys. Rev. X, 4, 041026 Bollobás, 2011, Sparse random graphs with clustering, Random Struct. Algorithms, 38, 269, 10.1002/rsa.20322 Newman, 2015, Generalized communities in networks, Phys. Rev. Lett., 115, 088701, 10.1103/PhysRevLett.115.088701 Devanny, 2016, The computational hardness of Dk-series Pattison, 2002, Neighborhood-based models for social networks, Sociol. Methodol., 32, 301, 10.1111/1467-9531.00119 Watts, 2002, Identity and search in social networks, Science, 296, 1302, 10.1126/science.1070120 Yang, 2012, Community-affiliation graph model for overlapping network community detection, 1170 Hébert-Dufresne, 2010, Propagation dynamics on networks featuring complex topologies, Phys. Rev. E, 82, 036115, 10.1103/PhysRevE.82.036115 Seshadhri, 2012, Community structure and scale-free collections of Erdős-Rényi graphs, Phys. Rev. E, 85, 056109, 10.1103/PhysRevE.85.056109 Karoński, 1999, On random intersection graphs: The subgraph problem, Combin. Probab. Comput., 8, 131, 10.1017/S0963548398003459 Erdös, 1966, The representation of a graph by set intersections, Canad. J. Math., 18, 106, 10.4153/CJM-1966-014-3 Frieze, 2016 Nikoletseas, 2008, Large independent sets in general random intersection graphs, Theoret. Comput. Sci., 406, 215, 10.1016/j.tcs.2008.06.047 Deijfen, 2009, Random intersection graphs with tunable degree distribution and clustering, Probab. Engrg. Inform. Sci., 23, 661, 10.1017/S0269964809990064 Godehardt, 2003, Two models of random intersection graphs for classification, 67 Davis, 2008, Clearing the FOG: Fuzzy, overlapping groups for social networks, Soc. Netw., 30, 201, 10.1016/j.socnet.2008.03.001 Barber, 2008, Clique matrices for statistical graph decomposition and parameterising restricted positive definite matrices, Uncertain. Artif. Intell., 26 S.A. Williamson, M. Tec, Random clique covers for graphs with local density and global sparsity, in: Proceedings of the 2019 Conference on Uncertainty in Artificial Intelligence, 2018. Ball, 2014, Epidemics on random intersection graphs, Ann. Appl. Probab., 24, 1081, 10.1214/13-AAP942 Xie, 2013, Overlapping community detection in networks: The state-of-the-art and comparative study, Acm Comput. Surv. Csur, 45, 43 Erdős, 1959, On random graphs I, Publ. Math., 6, 290 Gilbert, 1959, Random graphs, Ann. Math. Stat., 30, 1141, 10.1214/aoms/1177706098 Erdős, 1960, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci, 5, 17 De La Vega, 1982, Sur La Cardinalité Maximum Des Couplages d’hypergraphes Aléatoires Uniformes, Discrete Math., 40, 315 Schmidt-Pruzan, 1985, Component structure in the evolution of random hypergraphs, Combinatorica, 5, 81, 10.1007/BF02579445 de Arruda, 2020, Social contagion models on hypergraphs, Phys. Rev. Res., 2, 023032, 10.1103/PhysRevResearch.2.023032 Darling, 2005, Structure of large random hypergraphs, Ann. Appl. Probab., 15, 125, 10.1214/105051604000000567 Mezard, 2009 Dembo, 2008, Finite size scaling for the core of large random hypergraphs, Ann. Appl. Probab., 18, 1993, 10.1214/07-AAP514 Schmidt, 1983, A threshold for perfect matchings in random D-pure hypergraphs, Discrete Math., 45, 287, 10.1016/0012-365X(83)90044-4 Chen, 1996, Coloring bipartite hypergraphs, 345 Demetrovics, 1998, Asymptotic properties of keys and functional dependencies in random databases, Theoret. Comput. Sci., 190, 151, 10.1016/S0304-3975(97)00089-3 Bradde, 2009, The percolation transition in correlated hypergraphs, J. Stat. Mech. Theory Exp., 2009, P07028, 10.1088/1742-5468/2009/07/P07028 Girvan, 2002, Community structure in social and biological networks, Proc. Natl. Acad. Sci. USA, 99, 7821, 10.1073/pnas.122653799 Newman, 2004, Finding and evaluating community structure in networks, Phys. Rev. E, 69, 026113, 10.1103/PhysRevE.69.026113 Chung, 2002, Connected components in random graphs with given expected degree sequences, Ann. Comb., 6, 125, 10.1007/PL00012580 Stasi, 2014 Ghoshdastidar, 2014, Consistency of spectral partitioning of uniform hypergraphs under planted partition model, 397 Ke, 2019 Ahn, 2018, Hypergraph spectral clustering in the weighted stochastic block model, IEEE J. Sel. Top. Signal Process., 12, 959, 10.1109/JSTSP.2018.2837638 Paul, 2018 Turnbull, 2019 Leskovec, 2005, Realistic, mathematically tractable graph generation and evolution, using Kronecker multiplication, 133 Eikmeier, 2018, The HyperKron Graph Model for higher-order features, 941 Kahle, 2011, Random geometric complexes, Discrete Comput. Geom., 45, 553, 10.1007/s00454-010-9319-3 Linial, 2006, Homological connectivity of random 2-complexes, Combinatorica, 26, 475, 10.1007/s00493-006-0027-9 Kahle, 2014, Topology of random simplicial complexes: A survey, AMS Contemp. Math., 620, 201, 10.1090/conm/620/12367 Meshulam, 2009, Homological connectivity of random K-dimensional complexes, Random Struct. Algorithms, 34, 408, 10.1002/rsa.20238 Kahle, 2009, Topology of random clique complexes, Discrete Math., 309, 1658, 10.1016/j.disc.2008.02.037 Fowler, 2015 Iacopini, 2019, Simplicial models of social contagion, Nature Commun., 10, 2485, 10.1038/s41467-019-10431-6 Alberici, 2017, Aggregation models on hypergraphs, Ann. Phys., 376, 412, 10.1016/j.aop.2016.12.001 Zuev, 2015, Exponential random simplicial complexes, J. Phys. A, 48, 465002, 10.1088/1751-8113/48/46/465002 Chazal, 2017 Kahle, 2013, Limit theorems for Betti numbers of random simplicial complexes, Homol. Homotopy Appl., 15, 343, 10.4310/HHA.2013.v15.n1.a17 Bobrowski, 2018, Topology of random geometric complexes: A survey, J. Appl. Comput. Topol., 1, 331, 10.1007/s41468-017-0010-0 Fasy, 2014, Confidence sets for persistence diagrams, Ann. Statist., 42, 2301, 10.1214/14-AOS1252 Bianconi, 2018, Topological percolation on hyperbolic simplicial complexes, Phys. Rev. E, 98, 052308, 10.1103/PhysRevE.98.052308 Bianconi, 2019, Percolation on branching simplicial and cell complexes and its relation to interdependent percolation, Phys. Rev. E, 100, 062311, 10.1103/PhysRevE.100.062311 Overgoor, 2019, Choosing to grow a graph: Modeling network formation as discrete choice, 1409 Petri, 2018, Simplicial activity driven model, Phys. Rev. Lett., 121, 228301, 10.1103/PhysRevLett.121.228301 Ergün, 2002, Human sexual contact network as a bipartite graph, Physica A, 308, 483, 10.1016/S0378-4371(02)00628-3 Ramasco, 2004, Self-organization of collaboration networks, Phys. Rev. E, 70, 036106, 10.1103/PhysRevE.70.036106 Beguerisse Díaz, 2010, Competition for popularity in bipartite networks, Chaos, 20, 043101, 10.1063/1.3475411 Sneppen, 2004, A simple model for self-organization of bipartite networks, Europhys. Lett., 67, 349, 10.1209/epl/i2004-10074-0 Bak, 1987, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett., 59, 381, 10.1103/PhysRevLett.59.381 Friel, 2016, Interlocking directorates in Irish companies using a latent space model for bipartite networks, Proc. Natl. Acad. Sci. USA, 113, 6629, 10.1073/pnas.1606295113 Evans, 2007, Exact solutions for network rewiring models, Eur. Phys. J. B, 56, 65, 10.1140/epjb/e2007-00084-8 Evans, 2007, Exact solution for the time evolution of network rewiring models, Phys. Rev. E, 75, 056101, 10.1103/PhysRevE.75.056101 Wu, 2015, Emergent complex network geometry, Sci. Rep., 5, 10073, 10.1038/srep10073 Pollner, 2005, Preferential attachment of communities: The same principle, but a higher level, Europhys. Lett., 73, 478, 10.1209/epl/i2005-10414-6 Zhou, 2008, Weighted evolving networks with self-organized communities, Commun. Theor. Phys., 50, 261, 10.1088/0253-6102/50/1/50 Hébert-Dufresne, 2011, Structural preferential attachment: Network organization beyond the link, Phys. Rev. Lett., 107, 158702, 10.1103/PhysRevLett.107.158702 Hébert-Dufresne, 2012, Structural preferential attachment: Stochastic process for the growth of scale-free, modular, and self-similar systems, Phys. Rev. E, 85, 026108, 10.1103/PhysRevE.85.026108 Young, 2016, Growing networks of overlapping communities with internal structure, Phys. Rev. E, 94, 022317, 10.1103/PhysRevE.94.022317 Hébert-Dufresne, 2015, Complex networks as an emerging property of hierarchical preferential attachment, Phys. Rev. E, 92, 062809, 10.1103/PhysRevE.92.062809 Aldous, 1985, Exchangeability and related topics, 1 Griffiths, 2011, The Indian buffet process: An introduction and review, J Mach Learn Res, 12, 1185 Zhang, 2010, A hypergraph model of social tagging networks, J. Stat. Mech. Theory Exp., 2010, P10005, 10.1088/1742-5468/2010/10/P10005 Wang, 2010, Evolving hypernetwork model, Eur. Phys. J. B, 77, 493, 10.1140/epjb/e2010-00297-8 Liu, 2012, A social network model exhibiting tunable overlapping community structure, Procedia Comput. Sci., 9, 1400, 10.1016/j.procs.2012.04.154 Hu, 2019, Hypernetwork models based on random hypergraphs, Int. J. Mod. Phys. C IJMPC, 30, 1 Guang-Yong, 2013, A local-world evolving hypernetwork model, Chin. Phys. B, 23, 018901 Wu, 2014, Synchronization of an evolving complex hyper-network, Appl. Math. Model., 38, 2961, 10.1016/j.apm.2013.11.009 Guo, 2016, Non-uniform evolving hypergraphs and weighted evolving hypergraphs, Sci. Rep., 6, 36648, 10.1038/srep36648 Krapivsky, 2000, Connectivity of growing random networks, Phys. Rev. Lett., 85, 4629, 10.1103/PhysRevLett.85.4629 Guo, 2015, Brand effect versus competitiveness in hypernetworks, Chaos, 25, 023102, 10.1063/1.4907016 Bianconi, 2015, Interdisciplinary and physics challenges of network theory, Europhys. Lett., 111, 56001, 10.1209/0295-5075/111/56001 Bianconi, 2015, Complex quantum network manifolds in dimension d¿2 are scale-free, Sci. Rep., 5, 13979, 10.1038/srep13979 Bianconi, 2015, Complex quantum network geometries: Evolution and phase transitions, Phys. Rev. E, 92, 022815, 10.1103/PhysRevE.92.022815 Courtney, 2017, Weighted growing simplicial complexes, Phys. Rev. E, 95, 062301, 10.1103/PhysRevE.95.062301 Fountoulakis, 2019 Sizemore, 2018, Knowledge gaps in the early growth of semantic feature networks, Nat. Hum. Behav., 2, 682, 10.1038/s41562-018-0422-4 Blevins, 2020, On the reorderability of node-filtered order complexes, Phys. Rev. E, 101, 052311, 10.1103/PhysRevE.101.052311 da Silva, 2018, Complex network view of evolving manifolds, Phys. Rev. E, 97, 032316, 10.1103/PhysRevE.97.032316 Courtney, 2018, Dense power-law networks and simplicial complexes, Phys. Rev. E, 97, 052303, 10.1103/PhysRevE.97.052303 Kim, 2018 Masuda, 2017, Random walks and diffusion on networks, Phys. Rep., 10.1016/j.physrep.2017.07.007 Aldous, 2002, Reversible Markov chains and random walks on graphs, Unfinished Monograph Samukhin, 2008, Laplacian spectra of, and random walks on, complex networks: Are scale-free architectures really important?, Phys. Rev. E, 77, 036115, 10.1103/PhysRevE.77.036115 Hoffmann, 2012, Generalized master equations for non-Poisson dynamics on networks, Phys. Rev. E, 86, 046102, 10.1103/PhysRevE.86.046102 DeGroot, 1974, Reaching a consensus, J. Amer. Statist. Assoc., 69, 118, 10.1080/01621459.1974.10480137 Boltzmann, 1964 Tolman, 1979 Chung, 1997 Neuhäuser, 2020, Multibody interactions and nonlinear consensus dynamics on networked systems, Phys. Rev. E, 101, 032310, 10.1103/PhysRevE.101.032310 Torres, 2020, Simplicial complexes: Higher-order spectral dimension and dynamics, J. Phys.: Complex., 1, 015002 Burioni, 1996, Universal properties of spectral dimension, Phys. Rev. Lett., 76, 1091, 10.1103/PhysRevLett.76.1091 Millán, 2019, Synchronization in network geometries with finite spectral dimension, Phys. Rev. E, 99, 022307, 10.1103/PhysRevE.99.022307 J. Jia, M.T. Schaub, S. Segarra, A.R. Benson, Graph-based semi-supervised & active learning for edge flows, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 761–771. Mukherjee, 2016, Random walks on simplicial complexes and harmonics, Random Struct. Algorithms, 49, 379, 10.1002/rsa.20645 Dua, 2017 Carletti, 2020, Random walks on hypergraphs, Phys. Rev. E, 101, 022308, 10.1103/PhysRevE.101.022308 U. Chitra, B.J. Raphael, Random walks on hypergraphs with edge-dependent vertex weights, in: Proceedings of the 36th International Conference on Machine Learning, 2019, pp. 1172–1181. Agarwal, 2006, Higher order learning with graphs, 17 Li, 2017, Inhomogeneous hypergraph clustering with applications, 2308 Li, 2018, E-tail product return prediction via hypergraph-based local graph cut, 519 Ding, 2010, Interactive image segmentation using probabilistic hypergraphs, Pattern Recognit., 43, 1863, 10.1016/j.patcog.2009.11.025 Huang, 2010, Image retrieval via probabilistic hypergraph ranking, 3376 Ducournau, 2014, Random walks in directed hypergraphs and application to semi-supervised image segmentation, Comput. Vis. Image Underst., 120, 91, 10.1016/j.cviu.2013.10.012 Zeng, 2016, Learn to rank images: A unified probabilistic hypergraph model for visual search, Math. Probl. Eng., 2016, 10.1155/2016/7916450 Zhang, 2018, Dynamic hypergraph structure learning, 3162 Chan, 2015 Chan, 2019, Diffusion operator and spectral analysis for directed hypergraph Laplacian, Theoret. Comput. Sci., 784, 46, 10.1016/j.tcs.2019.03.032 Billings, 2019 Salnikov, 2018, Simplicial complexes and complex systems, Eur. J. Phys., 40, 014001, 10.1088/1361-6404/aae790 Tran, 2015, Combinatorial and random walk hypergraph Laplacian eigenmaps, Int. J. Mach. Learn. Comput., 5, 462, 10.18178/ijmlc.2015.5.6.553 S.N. Satchidanand, H. Ananthapadmanaban, B. Ravindran, Extended discriminative random walk: A hypergraph approach to multi-view multi-relational transductive learning, in: Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015. Liu, 2018, Quantum walks on regular uniform hypergraphs, Sci. Rep., 8, 9548, 10.1038/s41598-018-27825-z Cooper, 2011, The cover times of random walks on hypergraphs, 210 Harush, 2017, Dynamic patterns of information flow in complex networks, Nature Commun., 8, 2181, 10.1038/s41467-017-01916-3 Turing, 1952, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B Biol. Sci., 237, 37, 10.1098/rstb.1952.0012 Arenas, 2002, Self-organized criticality in evolutionary systems with local interaction, J. Econom. Dynam. Control, 26, 2115, 10.1016/S0165-1889(01)00025-2 Colizza, 2007, Reaction–diffusion processes and metapopulation models in heterogeneous networks, Nat. Phys., 3, 276, 10.1038/nphys560 Nakao, 2010, Turing patterns in network-organized activator–inhibitor systems, Nat. Phys., 6, 544, 10.1038/nphys1651 Asllani, 2014, The theory of pattern formation on directed networks, Nature Commun., 5, 1, 10.1038/ncomms5517 Kouvaris, 2017, Stationary patterns in star networks of bistable units: Theory and application to chemical reactions, Phys. Rev. E, 95, 042203, 10.1103/PhysRevE.95.042203 Cencetti, 2018, Pattern invariance for reaction-diffusion systems on complex networks, Sci. Rep., 8, 1, 10.1038/s41598-018-34372-0 Carletti, 2020 Huygens, 1986, The pendulum clock, Trans. RJ Blackwell Iowa State Univ. Press Ames. Néda, 2000, The sound of many hands clapping, Nature, 403, 849, 10.1038/35002660 Buck, 1988, Synchronous rhythmic flashing of fireflies. II, Q. Rev. Biol., 63, 265, 10.1086/415929 Boccaletti, 2002, The synchronization of chaotic systems, Phys. Rep., 366, 1, 10.1016/S0370-1573(02)00137-0 Pikovsky, 2003 Strogatz, 2004 Boccaletti, 2018 Kuramoto, 1984 Acebrón, 2005, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77, 137, 10.1103/RevModPhys.77.137 Arenas, 2008, Synchronization in complex networks, Phys. Rep., 469, 93, 10.1016/j.physrep.2008.09.002 Rodrigues, 2016, The Kuramoto model in complex networks, Phys. Rep., 610, 1, 10.1016/j.physrep.2015.10.008 Barahona, 2002, Synchronization in small-world systems, Phys. Rev. Lett., 89, 054101, 10.1103/PhysRevLett.89.054101 Gómez-Gardeñes, 2011, Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett., 106, 128701, 10.1103/PhysRevLett.106.128701 Boccaletti, 2016, Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization, Phys. Rep., 660, 1, 10.1016/j.physrep.2016.10.004 Nicosia, 2013, Remote synchronization reveals network symmetries and functional modules, Phys. Rev. Lett., 110, 174102, 10.1103/PhysRevLett.110.174102 Pecora, 2014, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nature Commun., 5, 1, 10.1038/ncomms5079 Abrams, 2004, Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 174102, 10.1103/PhysRevLett.93.174102 Bi, 2016, Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett., 117, 204101, 10.1103/PhysRevLett.117.204101 Aguiar, 2016, An overview of synchrony in coupled cell networks, 25 Nijholt, 2017, Center manifolds of coupled cell networks, SIAM J. Math. Anal., 49, 4117, 10.1137/16M106861X Golubitsky, 2006, Nonlinear dynamics of networks: The groupoid formalism, Bull. Am. Math. Soc., 43, 305, 10.1090/S0273-0979-06-01108-6 Stewart, 2003, Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst., 2, 609, 10.1137/S1111111103419896 Golubitsky, 2005, Patterns of synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. Dyn. Syst., 4, 78, 10.1137/040612634 Watanabe, 1993, Integrability of a globally coupled oscillator array, Phys. Rev. Lett., 70, 2391, 10.1103/PhysRevLett.70.2391 Watanabe, 1994, Constants of motion for superconducting Josephson arrays, Physica D, 74, 197, 10.1016/0167-2789(94)90196-1 Ott, 2008, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18, 037113, 10.1063/1.2930766 Bick, 2020, Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review, J. Math. Neurosci., 10, 1, 10.1186/s13408-020-00086-9 Vega, 2004, Fitness for synchronization of network motifs, Physica A, 343, 279, 10.1016/j.physa.2004.05.033 D’Huys, 2008, Synchronization properties of network motifs: Influence of coupling delay and symmetry, Chaos, 18, 037116, 10.1063/1.2953582 Skardal, 2019, Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes, Phys. Rev. Lett., 122, 248301, 10.1103/PhysRevLett.122.248301 Xu, 2020, Bifurcation analysis and structural stability of simplicial oscillator populations, Phys. Rev. Research, 2, 023281, 10.1103/PhysRevResearch.2.023281 Tanaka, 2011, Multistable attractors in a network of phase oscillators with three-body interactions, Phys. Rev. Lett., 106, 224101, 10.1103/PhysRevLett.106.224101 Ashwin, 2016, Hopf normal form with SN symmetry and reduction to systems of nonlinearly coupled phase oscillators, Physica D, 325, 14, 10.1016/j.physd.2016.02.009 Komarov, 2015, Finite-size-induced transitions to synchrony in oscillator ensembles with nonlinear global coupling, Phys. Rev. E, 92, 020901, 10.1103/PhysRevE.92.020901 Skardal, 2019 Pazó, 2005, Thermodynamic limit of the first-order phase transition in the Kuramoto model, Phys. Rev. E, 72, 046211, 10.1103/PhysRevE.72.046211 Nicosia, 2017, Collective phenomena emerging from the interactions between dynamical processes in multiplex networks, Phys. Rev. Lett., 118, 138302, 10.1103/PhysRevLett.118.138302 D’Souza, 2019, Explosive phenomena in complex networks, Adv. Phys., 68, 123, 10.1080/00018732.2019.1650450 Berec, 2016, Chimera state and route to explosive synchronization, Chaos, 86, 75 Berec, 2016, Explosive synchronization in clustered scale-free networks: Revealing the existence of chimera state, Eur. Phys. J. Spec. Top., 225, 7, 10.1140/epjst/e2016-02611-2 Kuehn, 2020 Stankovski, 2015, Coupling functions in networks of oscillators, New J. Phys., 17, 035002, 10.1088/1367-2630/17/3/035002 León, 2019, Phase reduction beyond the first order: The case of the mean-field complex Ginzburg-Landau equation, Phys. Rev. E, 100, 012211, 10.1103/PhysRevE.100.012211 Millán, 2020, Explosive higher-order Kuramoto dynamics on simplicial complexes, Phys. Rev. Lett., 124, 218301, 10.1103/PhysRevLett.124.218301 Millán, 2018, Complex network geometry and frustrated synchronization, Sci. Rep., 8, 9910, 10.1038/s41598-018-28236-w Gong, 2019, Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles, Phys. Rev. E, 100, 062210, 10.1103/PhysRevE.100.062210 Rosenblum, 2007, Self-organized quasiperiodicity in oscillator ensembles with global nonlinear coupling, Phys. Rev. Lett., 98, 064101, 10.1103/PhysRevLett.98.064101 Pikovsky, 2009, Self-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators, Physica D, 238, 27, 10.1016/j.physd.2008.08.018 Burylko, 2011, Desynchronization transitions in nonlinearly coupled phase oscillators, Physica D, 240, 1352, 10.1016/j.physd.2011.05.016 Nakao, 2016, Phase reduction approach to synchronisation of nonlinear oscillators, Contemp. Phys., 57, 188, 10.1080/00107514.2015.1094987 Pietras, 2019, Network dynamics of coupled oscillators and phase reduction techniques, Phys. Rep., 10.1016/j.physrep.2019.06.001 Ashwin, 2016, Identical phase oscillator networks: Bifurcations, symmetry and reversibility for generalized coupling, Front. Appl. Math. Stat., 2, 7, 10.3389/fams.2016.00007 Matheny, 2019, Exotic states in a simple network of nanoelectromechanical oscillators, Science, 363, eaav7932, 10.1126/science.aav7932 Bick, 2016, Chaos in generically coupled phase oscillator networks with nonpairwise interactions, Chaos, 26, 094814, 10.1063/1.4958928 Bick, 2018, Heteroclinic switching between chimeras, Phys. Rev. E, 97, 050201, 10.1103/PhysRevE.97.050201 Bick, 2019, Heteroclinic dynamics of localized frequency synchrony: heteroclinic cycles for small populations, J. Nonlin. Sci. Bick, 2019, Heteroclinic dynamics of localized frequency synchrony: Stability of heteroclinic cycles and networks, J. Nonlin. Sci. Bick, 2011, Chaos in symmetric phase oscillator networks, Phys. Rev. Lett., 107, 244101, 10.1103/PhysRevLett.107.244101 Komarov, 2013, Dynamics of multifrequency oscillator communities, Phys. Rev. Lett., 110, 134101, 10.1103/PhysRevLett.110.134101 Rosenblum, 2019, Numerical phase reduction beyond the first order approximation, Chaos, 29, 011105, 10.1063/1.5079617 Pecora, 1990, Synchronization in chaotic systems, Phys. Rev. Lett., 64, 821, 10.1103/PhysRevLett.64.821 Rosenblum, 1996, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76, 1804, 10.1103/PhysRevLett.76.1804 Wu, 1998, Synchronization in arrays of chaotic circuits coupled via hypergraphs: static and dynamic coupling, 287 Krawiecki, 2014, Chaotic synchronization on complex hypergraphs, Chaos Solitons Fractals, 65, 44, 10.1016/j.chaos.2014.04.009 Gambuzza, 2020 Lodato, 2007, Synchronization properties of network motifs, Europhys. Lett., 78, 28001, 10.1209/0295-5075/78/28001 Soriano, 2012, Synchronization in simple network motifs with negligible correlation and mutual information measures, Phys. Rev. Lett., 108, 134101, 10.1103/PhysRevLett.108.134101 Krishnagopal, 2017, Synchronization patterns: From network motifs to hierarchical networks, Phil. Trans. R. Soc. A, 375, 20160216, 10.1098/rsta.2016.0216 Amritkar, 2005, Synchronized clusters in coupled map networks. II. Stability analysis, Phys. Rev. E, 72, 016212, 10.1103/PhysRevE.72.016212 Pecora, 1998, Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80, 2109, 10.1103/PhysRevLett.80.2109 Englert, 2011, Synchronization of chaotic networks with time-delayed couplings: an analytic study, Phys. Rev. E, 83, 046222, 10.1103/PhysRevE.83.046222 Sorrentino, 2007, Network synchronization of groups, Phys. Rev. E, 76, 056114, 10.1103/PhysRevE.76.056114 Koseska, 2013, Oscillation quenching mechanisms: amplitude vs. oscillation death, Phys. Rep., 531, 173, 10.1016/j.physrep.2013.06.001 Mulas, 2020 Dayan, 2001 Gerstner, 2002 Bian, 2011, Adaptive synchronization of bipartite dynamical networks with distributed delays and nonlinear derivative coupling, Commun. Nonlinear Sci. Numer. Simul., 16, 4089, 10.1016/j.cnsns.2011.02.035 Shilnikov, 2008, Polyrhythmic synchronization in bursting networking motifs, Chaos, 18, 037120, 10.1063/1.2959850 Matias, 2011, Anticipated synchronization in a biologically plausible model of neuronal motifs, Phys. Rev. E, 84, 021922, 10.1103/PhysRevE.84.021922 Gollo, 2014, Mechanisms of zero-lag synchronization in cortical motifs, PLOS Comput. Biol., 10, 10.1371/journal.pcbi.1003548 Wojcik, 2014, Key bifurcations of bursting polyrhythms in 3-cell central pattern generators, PloS one, 9, 10.1371/journal.pone.0092918 Collens, 2020 Smirnov, 2005, Detection of weak directional coupling: phase-dynamics approach versus state-space approach, Phys. Rev. E, 71, 036207, 10.1103/PhysRevE.71.036207 Frenzel, 2007, Partial mutual information for coupling analysis of multivariate time series, Phys. Rev. Lett., 99, 204101, 10.1103/PhysRevLett.99.204101 Rosenblum, 2001, Detecting direction of coupling in interacting oscillators, Phys. Rev. E, 64, 045202, 10.1103/PhysRevE.64.045202 Kralemann, 2011, Reconstructing phase dynamics of oscillator networks, Chaos, 21, 025104, 10.1063/1.3597647 Kralemann, 2014, Reconstructing effective phase connectivity of oscillator networks from observations, New J. Phys., 16, 085013, 10.1088/1367-2630/16/8/085013 Kralemann, 2008, Phase dynamics of coupled oscillators reconstructed from data, Phys. Rev. E, 77, 066205, 10.1103/PhysRevE.77.066205 Tass, 1998, Detection of n:m phase locking from noisy data: application to magnetoencephalography, Phys. Rev. Lett., 81, 3291, 10.1103/PhysRevLett.81.3291 Kralemann, 2013, Detecting triplet locking by triplet synchronization indices, Phys. Rev. E, 87, 052904, 10.1103/PhysRevE.87.052904 Jia, 2015, Experimental study of the triplet synchronization of coupled nonidentical mechanical metronomes, Sci. Rep., 5, 17008, 10.1038/srep17008 Duggento, 2012, Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators, Phys. Rev. E, 86, 061126, 10.1103/PhysRevE.86.061126 Pastor-Satorras, 2001, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 3200, 10.1103/PhysRevLett.86.3200 Keeling, 2011 Pastor-Satorras, 2015, Epidemic processes in complex networks, Rev. Modern Phys., 87, 925, 10.1103/RevModPhys.87.925 de Arruda, 2018, Fundamentals of spreading processes in single and multilayer complex networks, Phys. Rep., 756, 1, 10.1016/j.physrep.2018.06.007 Goffman, 1964, Generalization of epidemic theory: An application to the transmission of ideas, Nature, 204, 225, 10.1038/204225a0 Centola, 2018 Nowak, 1990, From private attitude to public opinion: A dynamic theory of social impact., Psychol. Rev., 97, 362, 10.1037/0033-295X.97.3.362 Axelrod, 1997 Sen, 2014 Castellano, 2009, Statistical physics of social dynamics, Rev. Modern Phys., 81, 591, 10.1103/RevModPhys.81.591 Baronchelli, 2018, The emergence of consensus: A primer, R. Soc. Open Sci., 5, 172189, 10.1098/rsos.172189 Kermack, 1927, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 115, 700 Anderson, 1992 Hethcote, 2000, The mathematics of infectious diseases, SIAM Rev., 42, 599, 10.1137/S0036144500371907 Hufnagel, 2004, Forecast and control of epidemics in a globalized world, Proc. Natl. Acad. Sci. USA, 101, 15124, 10.1073/pnas.0308344101 Colizza, 2006, The role of the airline transportation network in the prediction and predictability of global epidemics, Proc. Natl. Acad. Sci. USA, 103, 2015, 10.1073/pnas.0510525103 Zhang, 2017, Spread of zika virus in the americas, Proc. Natl. Acad. Sci. USA, 114, E4334, 10.1073/pnas.1620161114 y Piontti, 2018 Viboud, 2019, The future of influenza forecasts, Proc. Natl. Acad. Sci. USA, 116, 2802, 10.1073/pnas.1822167116 Kucharski, 2020, Early dynamics of transmission and control of COVID-19: A mathematical modelling study, Lancet Infect. Dis., 10.1016/S1473-3099(20)30144-4 Kraemer, 2020, The effect of human mobility and control measures on the COVID-19 epidemic in China, Science, 10.1126/science.abb4218 Vazquez, 2007, Impact of non-Poissonian activity patterns on spreading processes, Phys. Rev. Lett., 98, 158702, 10.1103/PhysRevLett.98.158702 Bansal, 2010, The dynamic nature of contact networks in infectious disease epidemiology, J. Biol. Dyn., 4, 478, 10.1080/17513758.2010.503376 Karsai, 2011, Small but slow world: How network topology and burstiness slow down spreading, Phys. Rev. E, 83, 025102, 10.1103/PhysRevE.83.025102 Rocha, 2011, Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts, PLOS Comput. Biol., 7, 10.1371/journal.pcbi.1001109 Wang, 2019, Coevolution spreading in complex networks, Phys. Rep. Gleeson, 2011, High-accuracy approximation of binary-state dynamics on networks, Phys. Rev. Lett., 107, 068701, 10.1103/PhysRevLett.107.068701 Gleeson, 2013, Binary-state dynamics on complex networks: pair approximation and beyond, Phys. Rev. X, 3, 021004 Cozzo, 2013, Contact-based social contagion in multiplex networks, Phys. Rev. E, 88, 050801, 10.1103/PhysRevE.88.050801 Wang, 2017, Unification of theoretical approaches for epidemic spreading on complex networks, Rep. Progr. Phys., 80, 036603, 10.1088/1361-6633/aa5398 Kiss, 2017 Daley, 1964, Epidemics and rumours, Nature, 204, 10.1038/2041118a0 Bass, 1969, A new product growth for model consumer durables, Manag. Sci., 15, 215, 10.1287/mnsc.15.5.215 Bikhchandani, 1992, A theory of fads, fashion, custom, and cultural change as informational cascades, J. Polit. Econ., 100, 992, 10.1086/261849 Moreno, 2004, Dynamics of rumor spreading in complex networks, Phys. Rev. E, 69, 066130, 10.1103/PhysRevE.69.066130 Rogers, 2010 Centola, 2007, Complex contagions and the weakness of long ties, Am. J. Sociol., 113, 702, 10.1086/521848 Guilbeault, 2018, Complex contagions: a decade in review, 3 Kee, 2013, Social groups, social media, and higher dimensional social structures: a simplicial model of social aggregation for computational communication research, Commun. Q., 61, 35, 10.1080/01463373.2012.719566 SocioPatterns Collaboration, http://www.sociopatterns.org/. Cisneros-Velarde, 2020 Gómez, 2010, Discrete-time Markov chain approach to contact-based disease spreading in complex networks, Europhys. Lett., 89, 38009, 10.1209/0295-5075/89/38009 Matamalas, 2018, Effective approach to epidemic containment using link equations in complex networks, Sci. Adv., 4, eaau4212, 10.1126/sciadv.aau4212 Matamalas, 2020, Abrupt phase transition of epidemic spreading in simplicial complexes, Phys. Rev. Research, 2, 012049, 10.1103/PhysRevResearch.2.012049 Newman, 2003, Why social networks are different from other types of networks, Phys. Rev. E, 68, 036122, 10.1103/PhysRevE.68.036122 Miller, 2009, Spread of infectious disease through clustered populations, J. R. Soc. Interface, 6, 1121, 10.1098/rsif.2008.0524 Ritchie, 2014, Higher-order structure and epidemic dynamics in clustered networks, J. Theoret. Biol., 348, 21, 10.1016/j.jtbi.2014.01.025 O’Sullivan, 2015, Mathematical modeling of complex contagion on clustered networks, Front. Phys., 3, 71 Hébert-Dufresne, 2015, Complex dynamics of synergistic coinfections on realistically clustered networks, Proc. Natl. Acad. Sci. USA, 112, 10551, 10.1073/pnas.1507820112 St-Onge, 2020 Hébert-Dufresne, 2020 Yang, 2015, Knowledge diffusion in the collaboration hypernetwork, Physica A, 419, 429, 10.1016/j.physa.2014.10.012 Wang, 2015, Improved knowledge diffusion model based on the collaboration hypernetwork, Physica A, 428, 250, 10.1016/j.physa.2015.01.062 Peng, 2019, A hypernetwork-based approach to collaborative retrieval and reasoning of engineering design knowledge, Adv. Eng. Softw., 42, 100956 Bodó, 2016, SIS epidemic propagation on hypergraphs, Bull. Math. Biol., 78, 713, 10.1007/s11538-016-0158-0 Ghoshal, 2004, SIS Epidemics with household structure: the self-consistent field method, Math. Biol., 190, 71 House, 2008, Deterministic epidemic models with explicit household structure, Math. Biosci., 213, 29, 10.1016/j.mbs.2008.01.011 Ball, 2015, Seven challenges for metapopulation models of epidemics, including households models, Epidemics, 10, 63, 10.1016/j.epidem.2014.08.001 Granovetter, 1978, Threshold models of collective behavior, Am. J. Sociol., 83, 1420, 10.1086/226707 Karsai, 2014, Complex contagion process in spreading of online innovation, J. R. Soc. Interface, 11, 20140694, 10.1098/rsif.2014.0694 Suo, 2018, Information spreading dynamics in hypernetworks, Phys. A, 495, 475, 10.1016/j.physa.2017.12.108 Jhun, 2019, Simplicial SIS model in scale-free uniform hypergraph, J. Stat. Mech. Theory Exp., 2019, 123207, 10.1088/1742-5468/ab5367 Lübeck, 2004, Universal scaling behavior of non-equilibrium phase transitions, Internat. J. Modern Phys. B, 18, 3977, 10.1142/S0217979204027748 Ferreira, 2012, Epidemic thresholds of the susceptible-infected-susceptible model on networks: a comparison of numerical and theoretical results, Phys. Rev. E, 86, 041125, 10.1103/PhysRevE.86.041125 de Arruda, 2020 Dahlerup, 1988, From a small to a large minority: Women in scandinavian politics, Scand Polit. Stud., 11, 275, 10.1111/j.1467-9477.1988.tb00372.x Grey, 2006, Numbers and beyond: the relevance of critical mass in gender research, Polit. Gend., 2, 492 Centola, 2018, Experimental evidence for tipping points in social convention, Science, 360, 1116, 10.1126/science.aas8827 Ma, 2018, Study on information transmission model of enterprise informal organizations based on the hypernetwork, Chin. J. Phys., 56, 2424, 10.1016/j.cjph.2018.06.018 Dietz, 1967, Epidemics and rumours: a survey, J. R. Stat. Soc., 130, 505 Galam, 2008, Sociophysics: a review of galam models, Internat. J. Modern Phys. C, 19, 409, 10.1142/S0129183108012297 Lazer, 2009, Computational social science, Science, 323, 721, 10.1126/science.1167742 Galam, 2012, What is sociophysics about?, 3 Conte, 2012, Manifesto of computational social science, Eur. Phys. J. Spec. Top., 214, 325, 10.1140/epjst/e2012-01697-8 Liggett, 2012 Shao, 2009, Dynamic opinion model and invasion percolation, Phys. Rev. Lett., 103, 018701, 10.1103/PhysRevLett.103.018701 Suchecki, 2004, Conservation laws for the voter model in complex networks, Europhys. Lett., 69, 228, 10.1209/epl/i2004-10329-8 Suchecki, 2005, Voter model dynamics in complex networks: role of dimensionality, disorder, and degree distribution, Phys. Rev. E, 72, 036132, 10.1103/PhysRevE.72.036132 Diakonova, 2016, Irreducibility of multilayer network dynamics: The case of the voter model, New J. Phys., 18, 023010, 10.1088/1367-2630/18/2/023010 Fernández-Gracia, 2014, Is the voter model a model for voters?, Phys. Rev. Lett., 112, 158701, 10.1103/PhysRevLett.112.158701 Kearns, 2006, An experimental study of the coloring problem on human subject networks, Science, 313, 824, 10.1126/science.1127207 Judd, 2010, Behavioral dynamics and influence in networked coloring and consensus, Proc. Natl. Acad. Sci. USA, 107, 14978, 10.1073/pnas.1001280107 Chung, 2014, Hypergraph coloring games and voter models, Internet Math., 10, 66, 10.1080/15427951.2013.833676 Redner, 2019, Reality-inspired voter models: A mini-review, C. R. Phys., 10.1016/j.crhy.2019.05.004 Vazquez, 2008, Generic absorbing transition in coevolution dynamics, Phys. Rev. Lett., 100, 108702, 10.1103/PhysRevLett.100.108702 Horstmeyer, 2020, Adaptive voter model on simplicial complexes, Phys. Rev. E, 101, 022305, 10.1103/PhysRevE.101.022305 Galam, 2002, Minority opinion spreading in random geometry, Eur. Phys. J. B, 25, 403, 10.1140/epjb/e20020045 Watts, 2002, A simple model of global cascades on random networks, Proc. Natl. Acad. Sci. USA, 99, 5766, 10.1073/pnas.082090499 Lanchier, 2013, Stochastic dynamics on hypergraphs and the spatial majority rule model, J. Stat. Phys., 151, 21, 10.1007/s10955-012-0543-5 de Oliveira, 1992, Isotropic majority-vote model on a square lattice, J. Stat. Phys., 66, 273, 10.1007/BF01060069 Pereira, 2005, Majority-vote model on random graphs, Phys. Rev. E, 71, 016123, 10.1103/PhysRevE.71.016123 Latora, 2001, Efficient behavior of small-world networks, Phys. Rev. Lett., 87, 198701, 10.1103/PhysRevLett.87.198701 Campos, 2003, Small-world effects in the majority-vote model, Phys. Rev. E, 67, 026104, 10.1103/PhysRevE.67.026104 Luz, 2007, Majority-vote on directed small-world networks, Internat. J. Modern Phys. C, 18, 1251, 10.1142/S0129183107011297 Lima, 2006, Majority-vote on directed Barabasi–Albert networks, Internat. J. Modern Phys. C, 17, 1257, 10.1142/S0129183106008972 Lima, 2007, Majority-vote on undirected Barabási-Albert networks, Commun. Comput. Phys., 2, 358 Gradowski, 2015, Majority-vote model on scale-free hypergraphs, Acta. Phys. Polon., 127, 1 Hong, 2007, Finite-size scaling in complex networks, Phys. Rev. Lett., 98, 258701, 10.1103/PhysRevLett.98.258701 Deffuant, 2000, Mixing beliefs among interacting agents, Adv. Complex Syst., 3, 87, 10.1142/S0219525900000078 Lorenz, 2007, Continuous opinion dynamics under bounded confidence: A survey, Internat. J. Modern Phys. C, 18, 1819, 10.1142/S0129183107011789 Asch, 1951, Effects of group pressure upon the modification and distortion of judgments, Doc. Gestalt Psychol., 222 Axelrod, 1997, The dissemination of culture: a model with local convergence and global polarization, J.Confl.Resolut., 41, 203, 10.1177/0022002797041002001 Castellano, 2000, Nonequilibrium phase transition in a model for social influence, Phys. Rev. Lett., 85, 3536, 10.1103/PhysRevLett.85.3536 Klemm, 2003, Nonequilibrium transitions in complex networks: A model of social interaction, Phys. Rev. E, 67, 026120, 10.1103/PhysRevE.67.026120 Klemm, 2003, Global culture: A noise-induced transition in finite systems, Phys. Rev. E, 67, 045101, 10.1103/PhysRevE.67.045101 Battiston, 2017, Layered social influence promotes multiculturality in the Axelrod model, Sci. Rep., 7, 1809, 10.1038/s41598-017-02040-4 Maletić, 2014, Consensus formation on a simplicial complex of opinions, Phys. A, 397, 111, 10.1016/j.physa.2013.12.001 Maletić, 2018, Hidden multidimensional social structure modeling applied to biased social perception, Phys. A, 492, 1419, 10.1016/j.physa.2017.11.069 Roca, 2009, Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics, Phys. Life Rev., 6, 208, 10.1016/j.plrev.2009.08.001 Szabó, 2004, Rock-scissors-paper game on regular small-world networks, J. Phys. Math. Gen., 37, 2599, 10.1088/0305-4470/37/7/006 Szolnoki, 2014, Cyclic dominance in evolutionary games: a review, J. R. Soc. Interface, 11, 20140735, 10.1098/rsif.2014.0735 Axelrod, 1984, The evolution of cooperation Rapoport, 1966, A taxonomy of 2 x 2 games, by anatol rapoport and melvin guyer, S617 Rousseau, 1997, The discourses and other political writings Luce, 1957 Gui, 2005 Smith, 1982 Smith, 1976, The logic of asymmetric contests, Anim. Behav., 24, 159, 10.1016/S0003-3472(76)80110-8 Cressman, 1995, Evolutionary stability for two-stage Hawk-Dove games, Rocky Mountain J. Math., 145, 10.1216/rmjm/1181072273 Smith, 1972, Game theory and the evolution of fighting, Evol., 8 Diederich, 1989, Replicators with random interactions: A solvable model, Phys. Rev. A, 39, 4333, 10.1103/PhysRevA.39.4333 Hofbauer, 1998 Opper, 1999, Replicator dynamics, Comput. Phys. Comm., 121, 141, 10.1016/S0010-4655(99)00300-8 Chawanya, 2002, Large-dimensional replicator equations with antisymmetric random interactions, J. Phys. Soc. Japan, 71, 429, 10.1143/JPSJ.71.429 Perc, 2010, Coevolutionary games—a mini review, BioSystems, 99, 109, 10.1016/j.biosystems.2009.10.003 Hardin, 1968, The tragedy of the commons, Science, 162, 1243, 10.1126/science.162.3859.1243 Nowak, 1992, Evolutionary games and spatial chaos, Nature, 359, 826, 10.1038/359826a0 Santos, 2005, Scale-free networks provide a unifying framework for the emergence of cooperation, Phys. Rev. Lett., 95, 098104, 10.1103/PhysRevLett.95.098104 Gómez-Gardeñes, 2007, Dynamical organization of cooperation in complex topologies, Phys. Rev. Lett., 98, 108103, 10.1103/PhysRevLett.98.108103 Assenza, 2008, Enhancement of cooperation in highly clustered scale-free networks, Phys. Rev. E, 78, 017101, 10.1103/PhysRevE.78.017101 Cassar, 2007, Coordination and cooperation in local, random and small world networks: experimental evidence, Games Econom. Behav., 58, 209, 10.1016/j.geb.2006.03.008 Kirchkamp, 2007, Naive learning and cooperation in network experiments, Games Econom. Behav., 58, 269, 10.1016/j.geb.2006.04.002 Grujić, 2010, Social experiments in the mesoscale: Humans playing a spatial prisoner’s dilemma, PLOS One, 5, 10.1371/journal.pone.0013749 Traulsen, 2010, Human strategy updating in evolutionary games, Proc. Natl. Acad. Sci. USA, 107, 2962, 10.1073/pnas.0912515107 Gracia-Lázaro, 2012, Heterogeneous networks do not promote cooperation when humans play a prisoner’s dilemma, Proc. Natl. Acad. Sci. USA, 109, 12922, 10.1073/pnas.1206681109 Grujić, 2014, A comparative analysis of spatial prisoner’s dilemma experiments: conditional cooperation and payoff irrelevance, Sci. Rep., 4, 4615, 10.1038/srep04615 Rand, 2014, Static network structure can stabilize human cooperation, Proc. Natl. Acad. Sci. USA, 111, 17093, 10.1073/pnas.1400406111 Sánchez, 2018, Physics of human cooperation: experimental evidence and theoretical models, J. Stat. Mech. Theory Exp., 2018, 024001, 10.1088/1742-5468/aaa388 Hauert, 2004, Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature, 428, 643, 10.1038/nature02360 Nowak, 2006, Five rules for the evolution of cooperation, Science, 314, 1560, 10.1126/science.1133755 Szabó, 2007, Evolutionary games on graphs, Phys. Rep., 446, 97, 10.1016/j.physrep.2007.04.004 Wang, 2015, Evolutionary games on multilayer networks: a colloquium, Eur. Phys. J. B, 88, 124, 10.1140/epjb/e2015-60270-7 Sigmund, 2010 Archetti, 2012, Review: evolution of cooperation in one-shot social dilemmas without assortment, J. Theoret. Biol., 299, 9, 10.1016/j.jtbi.2011.06.018 Perc, 2013, Evolutionary dynamics of group interactions on structured populations: A review, J. R. Soc. Interface, 10, 20120997, 10.1098/rsif.2012.0997 Perc, 2017, Statistical physics of human cooperation, Phys. Rev., 687, 1 Peña, 2016, Evolutionary games of multiplayer cooperation on graphs, PLOS Comput. Biol., 12, 10.1371/journal.pcbi.1005059 Szabó, 2002, Phase transitions and volunteering in spatial public goods games, Phys. Rev. Lett., 89, 118101, 10.1103/PhysRevLett.89.118101 Brandt, 2003, Punishment and reputation in spatial public goods games, Proc. R. Soc. London B, 270, 1099, 10.1098/rspb.2003.2336 Santos, 2008, Social diversity promotes the emergence of cooperation in public goods games, Nature, 454, 213, 10.1038/nature06940 Rong, 2009, Effect of the degree correlation in public goods game on scale-free networks, Europhys. Lett., 87, 30001, 10.1209/0295-5075/87/30001 Rong, 2010, Feedback reciprocity mechanism promotes the cooperation of highly clustered scale-free networks, Phys. Rev. E, 82, 047101, 10.1103/PhysRevE.82.047101 Gao, 2010, Diversity of contribution promotes cooperation in public goods games, Phys. A, 389, 3166, 10.1016/j.physa.2010.04.018 Vukov, 2011, Escaping the tragedy of the commons via directed investments, J. Theoret. Biol., 287, 37, 10.1016/j.jtbi.2011.07.022 Szolnoki, 2011, Group-size effects on the evolution of cooperation in the spatial public goods game, Phys. Rev. E, 84, 047102, 10.1103/PhysRevE.84.047102 Perc, 2013, Collective behavior and evolutionary games – an introduction, Chaos Solitons Fractals, 56, 1, 10.1016/j.chaos.2013.06.002 Szolnoki, 2009, Topology-independent impact of noise on cooperation in spatial public goods games, Phys. Rev. E, 80, 056109, 10.1103/PhysRevE.80.056109 Szolnoki, 2013, Correlation of positive and negative reciprocity fails to confer an evolutionary advantage: Phase transitions to elementary strategies, Phys. Rev. X, 3, 041021 Helbing, 2010, Evolutionary establishment of moral and double moral standards through spatial interactions, PLOS Comput. Biol., 6, 10.1371/journal.pcbi.1000758 Wang, 2012, Evolution of public cooperation on interdependent networks: the impact of biased utility functions, Europhys. Lett., 97, 48001, 10.1209/0295-5075/97/48001 Wang, 2013, Interdependent network reciprocity in evolutionary games, Sci. Rep., 3, 1183, 10.1038/srep01183 Battiston, 2014, Structural measures for multiplex networks, Phys. Rev. E, 89, 032804, 10.1103/PhysRevE.89.032804 Battiston, 2017, Determinants of public cooperation in multiplex networks, New J. Phys., 19, 073017, 10.1088/1367-2630/aa6ea1 Roca, 2011, Emergence of social cohesion in a model society of greedy, mobile individuals, Proc. Natl. Acad. Sci. USA, 108, 11370, 10.1073/pnas.1101044108 Pichler, 2017, Public goods games on adaptive coevolutionary networks, Chaos, 27, 073107, 10.1063/1.4991679 Ren, 2018, Coevolution of public goods game and networks based on survival of the fittest, PLOS One, 13, 10.1371/journal.pone.0204616 Shen, 2018, Coevolutionary resolution of the public goods dilemma in interdependent structured populations, Europhys. Lett., 124, 48003, 10.1209/0295-5075/124/48003 Perc, 2018, Stability of subsystem solutions in agent-based models, Eur. J. Phys., 39, 014001, 10.1088/1361-6404/aa903d Javarone, 2016, The role of noise in the spatial public goods game, J. Stat. Mech. Theory Exp., 2016, 073404, 10.1088/1742-5468/2016/07/073404 Zheng, 2007, Cooperative behavior in a model of evolutionary snowdrift games with N-person interactions, Europhys. Lett., 80, 18002, 10.1209/0295-5075/80/18002 Santos, 2012, Dynamics of N-Person snowdrift games in structured populations, J. Theoret. Biol., 315, 81, 10.1016/j.jtbi.2012.09.001 Ji, 2011, Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors, Appl. Phys. Lett., 98, 103509, 10.1063/1.3564882 Pacheco, 2009, Evolutionary dynamics of collective action in N-Person stag hunt dilemmas, Proc. R. Soc. B Biol. Sci., 276, 315, 10.1098/rspb.2008.1126 Souza, 2009, Evolution of cooperation under N-Person snowdrift games, J. Theoret. Biol., 260, 581, 10.1016/j.jtbi.2009.07.010 Santos, 2011, Risk of collective failure provides an escape from the tragedy of the commons, Proc. Natl. Acad. Sci. USA, 108, 10421, 10.1073/pnas.1015648108 Chen, 2017, Evolutionary dynamics of N-Person Hawk-Dove games, Sci. Rep., 7, 1 Güth, 1982, An experimental analysis of ultimatum bargaining, J. Econ. Behav. Organiz., 3, 367, 10.1016/0167-2681(82)90011-7 Sinatra, 2009, The ultimatum game in complex networks, J. Stat. Mech. Theory Exp., 2009, P09012, 10.1088/1742-5468/2009/09/P09012 Santos, 2015, Evolutionary dynamics of group fairness, J. Theoret. Biol., 378, 96, 10.1016/j.jtbi.2015.04.025 Gomez-Gardeñes, 2011, Evolutionary games defined at the network mesoscale: the public goods game, Chaos Interdiscip. J. Nonlinear Sci., 21, 016113, 10.1063/1.3535579 Gómez-Gardeñes, 2011, Disentangling social and group heterogeneities: public goods games on complex networks, Europhys. Lett., 95, 68003, 10.1209/0295-5075/95/68003 Peña, 2012, Bipartite graphs as models of population structures in evolutionary multiplayer games, PLOS ONE, 7, 10.1371/journal.pone.0044514 Gracia-Lazaro, 2014, Intergroup information exchange drives cooperation in the public goods game, Phys. Rev. E, 90, 042808, 10.1103/PhysRevE.90.042808 Alvarez-Rodriguez, 2020 Baronchelli, 2006, Sharp transition towards shared vocabularies in multi-agent systems, J. Stat. Mech. Theory Exp., 2006, P06014, 10.1088/1742-5468/2006/06/P06014 Baronchelli, 2006, Topology-induced coarsening in language games, Phys. Rev. E, 73, 015102, 10.1103/PhysRevE.73.015102 Gneezy, 2005, Deception: The role of consequences, Amer. Econ. Rev., 95, 384, 10.1257/0002828053828662 Capraro, 2019, The evolution of lying in well-mixed populations, J. R. Soc. Interface, 16, 20190211, 10.1098/rsif.2019.0211 Capraro, 2020, Lying on networks: The role of structure and topology in promoting honesty, Phys. Rev. E, 101, 032305, 10.1103/PhysRevE.101.032305 Milinski, 2008, The collective-risk social dilemma and the prevention of simulated dangerous climate change, Proc. Natl. Acad. Sci. USA, 105, 2291, 10.1073/pnas.0709546105 Freeman, 1980, Q-analysis and the structure of friendship networks, Int. J. Man-Mach. Stud., 12, 367, 10.1016/S0020-7373(80)80021-6 Andjelković, 2015, Hierarchical sequencing of online social graphs, Phys. A, 436, 582, 10.1016/j.physa.2015.05.075 Sekara, 2016, Fundamental structures of dynamic social networks, Proc. Natl. Acad. Sci. USA, 113, 9977, 10.1073/pnas.1602803113 Mangan, 2003, Structure and function of the feed-forward loop network motif, Proc. Natl. Acad. Sci. USA, 100, 11980, 10.1073/pnas.2133841100 Kuzmin, 2018, Systematic analysis of complex genetic interactions, Science, 360, 10.1126/science.aao1729 Schneidman, 2003, Network information and connected correlations, Phys. Rev. Lett., 91, 238701, 10.1103/PhysRevLett.91.238701 Ibáñez-Marcelo, 2019, Topology highlights mesoscopic functional equivalence between imagery and perception: the case of hypnotizability, NeuroImage, 200, 437, 10.1016/j.neuroimage.2019.06.044 McPherson, 1982, Hypernetwork sampling: duality and differentiation among voluntary organizations, Soc. Netw., 3, 225, 10.1016/0378-8733(82)90001-6 Foster, 1982, Urban structures derived from collections of overlapping subsets, Urban Anthropol., 11, 177 Foster, 1984, Overlap structure of ceremonial events in two Thai villages, Thail. J. Dev. Adm., 24, 143 Faust, 1997, Centrality in affiliation networks, Soc. Netw., 19, 157, 10.1016/S0378-8733(96)00300-0 Bonacich, 1987, Power and centrality: A family of measures, Am. J. Sociol., 92, 1170, 10.1086/228631 Wylie, 1976, Mathematical structure in human affairs, by R. H. Atkin, Math. Gaz., 60, 69, 10.2307/3615655 Doreian, 1979, On the evolution of group and network structure, Soc. Netw., 2, 235, 10.1016/0378-8733(79)90016-9 Lehmann, 2019 Karsai, 2017, Bursty human dynamics Gould, 1979, A structural analysis of a game: The Liverpool v Manchester united cup final of 1977, Soc. Netw., 2, 253, 10.1016/0378-8733(79)90017-0 Pappalardo, 2019, A public data set of spatio-temporal match events in soccer competitions, Sci. Data, 6, 236, 10.1038/s41597-019-0247-7 Gao, 2018, Studying the utility preservation in social network anonymization via persistent homology, Comput. Secur., 77, 49, 10.1016/j.cose.2018.04.003 Greening, 2015, Higher-order interactions: understanding the knowledge capacity of social groups using simplicial sets, Current Zoology, 61, 114, 10.1093/czoolo/61.1.114 Catutto, 2007, Network properties of folksonomies, AI Commun. J. Spec. Issue Netw. Anal. Nat. Sci. Eng. Latora, 2013, Social cohesion, structural holes, and a tale of two measures, J. Stat. Phys., 745, 10.1007/s10955-013-0722-z Milojević, 2014, Principles of scientific research team formation and evolution, Proc. Natl. Acad. Sci. USA, 111, 3984, 10.1073/pnas.1309723111 Xiao, 2016, Node importance measure for scientific research collaboration from hypernetwork perspective, Teh. Vjesn., 23, 397 Newman, 2001, Scientific collaboration networks. I. Network construction and fundamental results, Phys. Rev. E, 64, 016131, 10.1103/PhysRevE.64.016131 Newman, 2001, Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality, Phys. Rev. E, 64, 016132, 10.1103/PhysRevE.64.016132 Newman, 2001, The structure of scientific collaboration networks, Proc. Natl. Acad. Sci. USA, 98, 404, 10.1073/pnas.98.2.404 Bianconi, 2014, Triadic closure as a basic generating mechanism of communities in complex networks, Phys. Rev. E, 90, 042806, 10.1103/PhysRevE.90.042806 Schneidman, 2006, Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, 440, 1007, 10.1038/nature04701 Yu, 2011, Higher-order interactions characterized in cortical activity, J. Neurosci., 31, 17514, 10.1523/JNEUROSCI.3127-11.2011 Shimazaki, 2012, State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data, PLOS Comput. Biol., 8, 10.1371/journal.pcbi.1002385 Köster, 2014, Modeling higher-order correlations within cortical microcolumns, PLOS Comput. Biol., 10, 10.1371/journal.pcbi.1003684 Shimazaki, 2015, Simultaneous silence organizes structured higher-order interactions in neural populations, Sci. Rep., 5, 9821, 10.1038/srep09821 Cayco-Gajic, 2015, Triplet correlations among similarly tuned cells impact population coding, Front. Comput. Neurosci., 9, 57, 10.3389/fncom.2015.00057 Arenzon, 1993, Neural networks with high-order connections, Phys. Rev. E, 48, 4060, 10.1103/PhysRevE.48.4060 Lemke, 1995, Chaotic dynamics of high-order neural networks, J. Stat. Phys., 79, 415, 10.1007/BF02179396 Ezaki, 2017, Energy landscape analysis of neuroimaging data, Phil. Trans. R. Soc. A, 375, 20160287, 10.1098/rsta.2016.0287 Watanabe, 2014, Energy landscapes of resting-state brain networks, Front. Neuroinform., 8, 12, 10.3389/fninf.2014.00012 Giusti, 2015, Clique topology reveals intrinsic geometric structure in neural correlations, Proc. Natl. Acad. Sci. USA, 112, 13455, 10.1073/pnas.1506407112 Dabaghian, 2012, A topological paradigm for hippocampal spatial map formation using persistent homology, PLOS Comput. Biol., 8, 10.1371/journal.pcbi.1002581 Dabaghian, 2014, Reconceiving the hippocampal map as a topological template, Elife, 3, 10.7554/eLife.03476 Babichev, 2018, Robust spatial memory maps encoded by networks with transient connections, PLOS Comput. Biol., 14, 10.1371/journal.pcbi.1006433 Reimann, 2017, Cliques of neurons bound into cavities provide a missing link between structure and function, Front. Comput. Neurosci., 11, 48, 10.3389/fncom.2017.00048 de Vico Fallani, 2014, Graph analysis of functional brain networks: practical issues in translational neuroscience, Philos. Trans. R. Soc. B, 369, 20130521, 10.1098/rstb.2013.0521 Huang, 2017, Weak higher-order interactions in macroscopic functional networks of the resting brain, J. Neurosci., 37, 10481, 10.1523/JNEUROSCI.0451-17.2017 Zhang, 2017, Test-retest reliability of “high-order” functional connectivity in Young healthy adults, Front. Neurosci., 11, 439, 10.3389/fnins.2017.00439 Plis, 2014, High-order interactions observed in multi-task intrinsic networks are dominant indicators of aberrant brain function in schizophrenia, Neuroimage, 102, 35, 10.1016/j.neuroimage.2013.07.041 Zhang, 2016, Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment, J. Alzheimers Dis., 54, 1095, 10.3233/JAD-160092 Lee, 2017, Integrated multimodal network approach to PET and MRI based on multidimensional persistent homology, Hum. Brain Mapp., 38, 1387, 10.1002/hbm.23461 Lee, 2014, Hole detection in metabolic connectivity of Alzheimer’s disease using k- Laplacian, 297 Bendich, 2016, Persistent homology analysis of brain artery trees, Ann. Appl. Stat., 10, 198, 10.1214/15-AOAS886 Lee, 2012, Persistent brain network homology from the perspective of dendrogram, IEEE Trans. Med. Imaging, 31, 2267, 10.1109/TMI.2012.2219590 Lee, 2011, Discriminative persistent homology of brain networks, 841 Santos, 2019, Topological phase transitions in functional brain networks, Physical Review E, 100, 032414, 10.1103/PhysRevE.100.032414 Chung, 2017, Exact topological inference for paired brain networks via persistent homology, 299 Rybakken, 2019, Decoding of neural data using cohomological feature extraction, Neural Comput., 31, 68, 10.1162/neco_a_01150 Lord, 2016, Insights into brain architectures from the homological scaffolds of functional connectivity networks, Front. Syst. Neurosci., 10, 85, 10.3389/fnsys.2016.00085 Lee, 2019, Harmonic holes as the submodules of brain network and network dissimilarity, 110 Chung, 2019, Exact topological inference of the resting-state brain networks in twins, Netw. Neurosci., 3, 674, 10.1162/netn_a_00091 Ibáñez-Marcelo, 2019, Spectral and topological analyses of the cortical representation of the head position: Does hypnotizability matter?, Brain Behav., 9, 10.1002/brb3.1277 Saggar, 2018, Towards a new approach to reveal dynamical organization of the brain using topological data analysis, Nature Commun., 9, 1, 10.1038/s41467-018-03664-4 Ellis, 2019, Feasibility of topological data analysis for event-related fMRI, Netw. Neurosci., 3, 695, 10.1162/netn_a_00095 Giusti, 2016, Two’s company, three (or more) is a simplex, J. Comput. Neurosci., 41, 1, 10.1007/s10827-016-0608-6 Sizemore, 2019, The importance of the whole: Topological data analysis for the network neuroscientist, Netw. Neurosci., 3, 656, 10.1162/netn_a_00073 Case, 1981, Testing for higher order interactions, Am. Nat., 118, 920, 10.1086/283885 Abrams, 1983, Arguments in favor of higher order interactions, Am. Nat., 121, 887, 10.1086/284111 Kareiva, 1994, Special feature: higher order interactions as a foil to reductionist ecology, Ecology, 75, 10.2307/1939613 Billick, 1994, Higher order interactions in ecological communities: What are they and how can they be detected?, Ecology, 75, 1529, 10.2307/1939614 Wootton, 1993, Indirect effects and habitat use in an intertidal community: Interaction chains and interaction modifications, Am. Nat., 141, 71, 10.1086/285461 Bairey, 2017, High-order species interactions shape ecosystem diversity, Nature Commun., 7, 12285, 10.1038/ncomms12285 Kelsic, 2015, Counteraction of antibiotic production and degradation stabilizes microbial communities, Nature, 521, 516, 10.1038/nature14485 Perlin, 2009, Protection of Salmonella by ampicillin-resistant Escherichia coli in the presence of otherwise lethal drug concentrations, Proc. R. Soc. B Biol. Sci., 276, 3759, 10.1098/rspb.2009.0997 Abrudan, 2015, Socially mediated induction and suppression of antibiosis during bacterial coexistence, Proc. Natl. Acad. Sci. USA, 112, 11054, 10.1073/pnas.1504076112 Koen-Alonso, 2007, A process-oriented approach to the multispecies functional response, 1 de Oliveira, 2000, Random replicators with high-order interactions, Phys. Rev. Lett., 85, 4984, 10.1103/PhysRevLett.85.4984 Yoshino, 2008, Rank abundance relations in evolutionary dynamics of random replicators, Phys. Rev. E, 78, 031924, 10.1103/PhysRevE.78.031924 Sonntag, 2004, Competition hypergraphs, Discrete Appl. Math., 143, 324, 10.1016/j.dam.2004.02.010 Golubski, 2016, Ecological networks over the edge: Hypergraph trait-mediated indirect interaction (TMII) structure, Trends Ecol. Evol., 31, 344, 10.1016/j.tree.2016.02.006 May, 1972, Will a large complex system be stable?, Nature, 436, 413, 10.1038/238413a0 Vandermeer, 1969, The competitive structure of communities: An experimental approach with protozoa, Ecology, 50, 362, 10.2307/1933884 Neill, 1974, The community matrix and interdependence of the competition coefficients, Am. Nat., 108, 399, 10.1086/282922 Dormann, 2005, Experimental evidence rejects pairwise modelling approach to coexistence in plant communities, Proc. Biol. Sci., 272, 1279, 10.1098/rspb.2005.3066 Weigelt, 2007, Identifying mechanisms of competition in multi-species communities, J. Ecol., 95, 53, 10.1111/j.1365-2745.2006.01198.x Allesina, 2011, A competitive network theory of species diversity, Proc. Natl. Acad. Sci. USA, 108, 5638, 10.1073/pnas.1014428108 Kerr, 2002, Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors, Nature, 418, 171, 10.1038/nature00823 Hofbauer, 2003, Evolutionary game dynamics, Bull. Amer. Math. Soc., 40, 479, 10.1090/S0273-0979-03-00988-1 Nowak, 2004, Evolutionary dynamics of biological games, Science, 303, 793, 10.1126/science.1093411 Taylor, 1978, Evolutionary stable strategies and game dynamics, Math. Biosci., 40, 145, 10.1016/0025-5564(78)90077-9 Hofbauer, 2010 Mayfield, 2017, Higher-order interactions capture unexplained complexity in diverse communities, Nat. Ecol. Evol., 1, 0062, 10.1038/s41559-016-0062 Valverde, 2020, Coexistence of nestedness and modularity in host–pathogen infection networks, Nat. Ecol. Evol., 1 Mariani, 2019, Nestedness in complex networks: Observation, emergence, and implications, Phys. Rev. Oltvai, 2002, Life’s complexity pyramid, Science, 298, 763, 10.1126/science.1078563 Aittokallio, 2006, Graph-based methods for analysing networks in cell biology, Brief. Bioinform., 7, 243, 10.1093/bib/bbl022 Vermeulen, 2020, The exposome and health: where chemistry meets biology, Science, 367, 392, 10.1126/science.aay3164 Ruepp, 2010, CORUM: The comprehensive resource of mammalian protein complexes—2009, Nucl. Acids Res., 38, D497, 10.1093/nar/gkp914 Wong, 2008, An evolutionary and structural characterization of mammalian protein complex organization, BMC Genomics, 9, 629, 10.1186/1471-2164-9-629 Klamt, 2009, Hypergraphs and cellular networks, PLOS Comput. Biol., 5, 10.1371/journal.pcbi.1000385 Ritz, 2014, Signaling hypergraphs, Trends Biotechnol., 32, 356, 10.1016/j.tibtech.2014.04.007 Gaudelet, 2018, Higher-order molecular organization as a source of biological function, Bioinformatics, 34, i944, 10.1093/bioinformatics/bty570 Pržulj, 2004, Modeling interactome: scale-free or geometric?, Bioinformatics, 20, 3508, 10.1093/bioinformatics/bth436 Franzese, 2019, Hypergraph-based connectivity measures for signaling pathway topologies, PLOS Comput. Biol., 15, 10.1371/journal.pcbi.1007384 Klimm, 2020, Hypergraphs for predicting essential genes using multiprotein complex data, bioRxiv Pearcy, 2016, Complexity and robustness in hypernetwork models of metabolism, J. Theoret. Biol., 406, 99, 10.1016/j.jtbi.2016.06.032 Shen, 2018, A genome-scale metabolic network alignment method within a hypergraph-based framework using a rotational tensor-vector product, Sci. Rep., 8, 1, 10.1038/s41598-018-34692-1 Jost, 2019, Hypergraph Laplace operators for chemical reaction networks, Adv. Math., 351, 870, 10.1016/j.aim.2019.05.025 Tian, 2009, A hypergraph-based learning algorithm for classifying gene expression and arrayCGH data with prior knowledge, Bioinformatics, 25, 2831, 10.1093/bioinformatics/btp467 Battle, 2010, Automated identification of pathways from quantitative genetic interaction data, Mol. Syst. Biol., 6, 10.1038/msb.2010.27 Sumazin, 2011, An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma, Cell, 147, 370, 10.1016/j.cell.2011.09.041 Rahman, 2013, Reverse engineering molecular hypergraphs, IEEE/ACM Trans. Comput. Biol. Bioinform., 10, 1113, 10.1109/TCBB.2013.71 Marques-Pita, 2013, Canalization and control in automata networks: body segmentation in drosophila melanogaster, PLOS ONE, 8, 10.1371/journal.pone.0055946 Kong, 2019, A hypergraph-based method for large-scale dynamic correlation study at the transcriptomic scale, BMC Genomics, 20, 397, 10.1186/s12864-019-5787-x Zimmer, 2016, Prediction of multidimensional drug dose responses based on measurements of drug pairs, Proc. Natl. Acad. Sci. USA, 113, 10442, 10.1073/pnas.1606301113 Katzir, 2019, Prediction of ultra-high-order antibiotic combinations based on pairwise interactions, PLOS Comput. Biol., 15, 10.1371/journal.pcbi.1006774 Tendler, 2019, Noise-precision tradeoff in predicting combinations of mutations and drugs, PLOS Comput. Biol., 15, 10.1371/journal.pcbi.1006956 Zimmer, 2017, Prediction of drug cocktail effects when the number of measurements is limited, PLoS Biol., 15, 10.1371/journal.pbio.2002518 Otwinowski, 2014, Inferring fitness landscapes by regression produces biased estimates of epistasis, Proc. Natl. Acad. Sci. USA, 111, E2301, 10.1073/pnas.1400849111 Crona, 2017, Inferring genetic interactions from comparative fitness data, Elife, 6, 10.7554/eLife.28629 Weinreich, 2013, Should evolutionary geneticists worry about higher-order epistasis?, Curr. Opin. Genet. Dev., 23, 700, 10.1016/j.gde.2013.10.007 Mackay, 2014, Why epistasis is important for tackling complex human disease genetics, Genome Med., 6, 42, 10.1186/gm561 Sanchez, 2019, Defining higher-order interactions in synthetic ecology: lessons from physics and quantitative genetics, Cell Syst., 9, 519, 10.1016/j.cels.2019.11.009 Guerrero, 2019, Proteostasis environment shapes higher-order epistasis operating on antibiotic resistance, Genetics, 212, 565, 10.1534/genetics.119.302138 Yitbarek, 2019, Deconstructing higher-order interactions in the microbiota: A theoretical examination, bioRxiv, 647156 Mickalide, 2019, Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator microbial community, Cell Syst., 9, 521, 10.1016/j.cels.2019.11.004 Niu, 2019, RWHMDA: random walk on hypergraph for microbe-disease association prediction, Front. Microbiol., 10, 1578, 10.3389/fmicb.2019.01578 St-Onge, 2020 Pokorny, 2016, Topological trajectory classification with filtrations of simplicial complexes and persistent homology, Int. J. Robot. Res., 35, 204, 10.1177/0278364915586713 Herlihy, 2013 É. Goubault, J. Ledent, S. Rajsbaum, A simplicial complex model for dynamic epistemic logic to study distributed task computability, in: Proceedings Ninth International Symposium on Games, Automata, Logics, and Formal Verification, 2018. van Ditmarsch, 2020 Reitz, 2020 Kališnik, 2019, A higher-dimensional homologically persistent skeleton, Adv. Appl. Math., 102, 113, 10.1016/j.aam.2018.07.004 Guerra, 2020 Karypis, 1999, Multilevel hypergraph partitioning: Applications in VLSI domain, IEEE Trans. Very Large Scale Integr. VLSI Syst., 7, 69, 10.1109/92.748202 Neubauer, 2009, Towards community detection in k-partite k-uniform hypergraphs, 1 Marietti, 2008, Cores of simplicial complexes, Discrete Comput. Geom., 40, 444, 10.1007/s00454-008-9081-y Duval, 2013, Critical groups of simplicial complexes, Ann. Comb., 17, 53, 10.1007/s00026-012-0168-z Steenbergen, 2014, A Cheeger-type inequality on simplicial complexes, Adv. Appl. Math., 56, 56, 10.1016/j.aam.2014.01.002 Parzanchevski, 2017, Mixing in high-dimensional expanders, Combin. Probab. Comput., 26, 746, 10.1017/S0963548317000116 Sizemore, 2017, Classification of weighted networks through mesoscale homological features, J. Complex Netw., 5, 245 Petri, 2013, Topological strata of weighted complex networks, PLOS ONE, 8, 10.1371/journal.pone.0066506 Bobrowski, 2020, Homological percolation and the euler characteristic, Phys. Rev. E, 101, 032304, 10.1103/PhysRevE.101.032304 Brugere, 2018, Network structure inference,a survey: Motivations,methods,and applications, ACM Comput. Surv., 51, 24:1, 10.1145/3154524 Peixoto, 2019, Network reconstruction and community detection from dynamics, Phys. Rev. Lett., 123, 128301, 10.1103/PhysRevLett.123.128301 Squartini, 2018, Reconstruction methods for networks: the case of economic and financial systems, Phys. Rep., 757, 1, 10.1016/j.physrep.2018.06.008 Phinyomark, 2017, Resting-state fmri functional connectivity: Big data preprocessing pipelines and topological data analysis, IEEE Trans. Big Data, 3, 415, 10.1109/TBDATA.2017.2734883 Battiston, 2010, The structure of financial networks, 131 Faes, 2015, Estimating the decomposition of predictive information in multivariate systems, Phys. Rev. E, 91, 032904, 10.1103/PhysRevE.91.032904 Faes, 2017, Multiscale information decomposition: Exact computation for multivariate Gaussian processes, Entropy, 19, 408, 10.3390/e19080408 Rosas, 2019, Quantifying high-order interdependencies via multivariate extensions of the mutual information, Phys. Rev. E, 100, 032305, 10.1103/PhysRevE.100.032305 Hébert-Dufresne, 2020, Macroscopic patterns of interacting contagions are indistinguishable from social reinforcement, Nat. Phys., 1