Networking architectures and protocols for smart city systems
Tóm tắt
The smart city model is used by many organizations for large cities around the world to significantly enhance and improve the quality of life of the inhabitants, improve the utilization of city resources, and reduce operational costs. This model includes various heterogeneous technologies such as Cyber-Physical Systems (CPS), Internet of Things (IoT), Wireless Sensor Networks (WSNs), Cloud Computing, and Unmanned Aerial Vehicles (UAVs). However, in order to reach these important objectives, efficient networking and communication protocols are needed to provide the necessary coordination and control of the various system components. In this paper, we identify the networking characteristics and requirements of smart city applications, and identify the networking protocols that can be used to support the various data traffic flows that are needed between the different components. In addition, we provide illustrations of networking architectures of selected smart city systems, which include smart grid, smart home energy management, smart water, UAV and commercial aircraft safety, and pipeline monitoring and control systems.
Tài liệu tham khảo
Watteyne T, Pister KSJ (2011) Smarter cities through standards-based wireless sensor networks. IBM J Res Dev 55(1.2):1–7.
Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M (2014) Internet of things for smart cities. IEEE Internet Things J 1(1):22–32.
Gurgen L, Gunalp O, Benazzouz Y, Gallissot M (2013) Self-aware cyber-physical systems and applications in smart buildings and cities In: Proceedings of the Conference on Design, Automation and Test in Europe, pages 1149–1154. EDA Consortium.
Ermacora G, Rosa S, Bona B (2015) Sliding autonomy in cloud robotics services for smart city applications In: Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts, 155–156.. ACM.
Mohammed F, Idries A, Mohamed N, Al-Jaroodi J, Jawhar I (2014) Uavs for smart cities: Opportunities and challenges In: Unmanned Aircraft Systems (ICUAS), 2014 International Conference on, 267–273.. IEEE.
Giordano A, Spezzano G, Vinci A (2016) Smart agents and fog computing for smart city applications In: International Conference on Smart Cities, 137–146.. Springer.
Clohessy T, Acton T, Morgan L (2014) Smart city as a service (scaas): a future roadmap for e-government smart city cloud computing initiatives In: Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, 836–841.. IEEE Computer Society.
Al-Nuaimi E, Al-Neyadi H, Mohamed N, Al-Jaroodi J (2015) Applications of big data to smart cities. J Internet Serv Appl 6(1):25.
Mohamed N, Lazarova-Molnar S, Al-Jaroodi J (2017) Cloud of things: Optimizing smart city services In: Proceedings of the International Conference on Modeling, Simulation and Applied Optimization, 1–5.. IEEE.
Erol-Kantarci M, Mouftah HT (2012) Suresense: sustainable wireless rechargeable sensor networks for the smart grid. IEEE Wirel Commun 19(3).
Gutiérrez J, Villa-Medina JF, Nieto-Garibay A, Porta-Gándara MÁ (2014) Automated irrigation system using a wireless sensor network and gprs module. IEEE Trans Instrum Meas 63(1):166–76.
Centenaro M, Vangelista L, Zanella A, Zorzi M (2016) Long-range communications in unlicensed bands: The rising stars in the iot and smart city scenarios. IEEE Wirel Commun 23(5):60–7.
Leccese F, Cagnetti M, Trinca D (2014) A smart city application: A fully controlled street lighting isle based on raspberry-pi card, a zigbee sensor network and wimax. Sensors 14(12):24408–24.
Sanchez L, Muñoz L, Galache JA, Sotres P, Santana JR, Gutierrez V, Ramdhany R, Gluhak A, Krco S, Theodoridis E, et al. (2014) Smartsantander: Iot experimentation over a smart city testbed. Comput Netw 61:217–38.
Wan J, Di L, Zou C, Zhou K (2012) M2m communications for smart city: An event-based architecture In: Computer and Information Technology (CIT), 2012 IEEE 12th International Conference on, 895–900.. IEEE.
Gaur A, Scotney B, Parr G, McClean S (2015) Smart city architecture and its applications based on iot. Procedia Comput Sci 52:1089–94.
Jin J, Gubbi J, Luo T, Palaniswami M (2012) Network architecture and qos issues in the internet of things for a smart city In: Communications and Information Technologies (ISCIT), 2012 International Symposium on, 956–961.. IEEE.
De Poorter E, Moerman I, Demeester P (2011) Enabling direct connectivity between heterogeneous objects in the internet of things through a network-service-oriented architecture. EURASIP J Wirel Commun Netw 2011(1):61.
Karnouskos S (2011) Cyber-physical systems in the smartgrid In: Industrial Informatics (INDIN), 2011 9th IEEE International Conference on, 20–23.. IEEE.
Miclea L, Sanislav T (2011) About dependability in cyber-physical systems In: Design & Test Symposium (EWDTS), 2011 9th East-West, 17–21.. IEEE.
Sridhar S, Hahn A, Govindarasu M (2012) Cyber–physical system security for the electric power grid. Proc IEEE 100(1):210–24.
Berger C, Rumpe B (2014) Autonomous driving-5 years after the urban challenge: The anticipatory vehicle as a cyber-physical system. arXiv preprint arXiv:1409.0413.
Cunningham R, Garg A, Cahill V, et al. (2008) A collaborative reinforcement learning approach to urban traffic control optimization In: Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT’08. IEEE/WIC/ACM International Conference on, 560–566.. IEEE.
Kartakis S, Abraham E, McCann JA (2015) Waterbox: A testbed for monitoring and controlling smart water networks In: Proceedings of the 1st ACM International Workshop on Cyber-Physical Systems for Smart Water Networks, 8.. ACM.
Gonda L, Cugnasca CE (2006) A proposal of greenhouse control using wireless sensor networks In: Proceedings of 4thWorld Congress Conference on Computers in Agriculture and Natural Resources, Orlando, Florida, USA. p. 229.
Mohamed N, Al-Jaroodi J, Jawhar I, Lazarova-Molnar S (2014) A service-oriented middleware for building collaborative uavs. J Intell Robot Syst 74(1-2):309–21.
Lee J, Bagheri B, Kao H-A (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23.
López P, Fernández D, Jara AJ, Skarmeta AF (2013) Survey of internet of things technologies for clinical environments In: Advanced Information Networking and Applications Workshops (WAINA), 2013 27th International Conference on, 1349–1354.. IEEE.
Macedo D, Guedes LA, Silva I (2014) A dependability evaluation for internet of things incorporating redundancy aspects In: Networking, Sensing and Control (ICNSC), 2014 IEEE 11th International Conference on, 417–422.. IEEE.
Silva I, Leandro R, Macedo D, Guedes LA (2013) A dependability evaluation tool for the internet of things. Comput Electr Eng 39(7):2005–18.
(2014) Oma lightweight m2m. Available: http://technical.openmobilealliance.org/technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0-2.
Perelman V, Ersue M, Schönwälder J, Watsen K (2012) Network Configuration Protocol Light (NETCONF Light). Network.
(2013) Commercial building automation systems. Navigant Consulting Res, Boulder.
Suciu G, Vulpe A, Halunga S, Fratu O, Todoran G, Suciu V (2013) Smart cities built on resilient cloud computing and secure internet of things In: Control Systems and Computer Science (CSCS), 2013 19th International Conference on, 513–518.. IEEE.
Bolodurina I, Parfenov D (2017) Development and research of models of organization distributed cloud computing based on the software-defined infrastructure. Procedia Comput Sci 103:569–76.
Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things In: Proceedings of the first edition of the MCC workshop on Mobile cloud computing, 13–16.. ACM.
Liu J, Li Y, Chen M, Dong W, Jin D (2015) Software-defined internet of things for smart urban sensing. IEEE Commun Mag 53(9):55–63.
Olenewa JL (2014) Guide to Wireless Communications. Cengage Learn.
Stallings W (2005) Wireless Communications and Networks. Prentice Hall, Pearson Education, Inc., Upper Saddle River.
IEEE 802.11, IEEE 802.16. http://en.wikipedia.org/wiki, viewed December 10, 2014.
Goyal D, Tripathy MR (2012) Routing protocols in wireless sensor networks: A survey In: Advanced Computing & Communication Technologies (ACCT), 2012 Second International Conference on, 474–480.. IEEE.
Jawhar I, Mohamed N, Agrawal DP (2011) Linear wireless sensor networks: Classification and applications. J Netw Comput Appl 34(5):1671–82.
Nunes BAA, Mendonca M, Nguyen X-N, Obraczka K, Turletti T (2014) A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Commun Surv Tutor 16(3):1617–34.
Kerczewski RJ, Griner JH (2012) Control and non-payload communications links for integrated unmanned aircraft operations In: Report, NASA Glenn Research Center, Cleveland, Ohio, USA.
(2012) Unmanned aircraft systems (uas) integrated in the national airspace system (nas) technology development project plan In: National Aeronautics and Space Administration.
Zeng Y, Zhang R, Lim TJ (2016) Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun Mag. arXiv preprint arXiv:1602.03602 54(5).
Sajatovic M, Haindl B, Ehammer M, Graupl T, Schnell M, Epple U, Brandes S (2009) L-dacs1 system definition proposal: Delivrable d2. EUROCONTROL, Tech. Rep. Version 1.0.
Fistas N (2009) L-dacs2 system definition proposal: Delivrable d2. EUROCONTROL, Tech. Rep. Version 1.0.
Neji N, De Lacerda R, Azoulay A, Letertre T, Outtier O (2013) Survey on the future aeronautical communication system and its development for continental communications. IEEE Trans Veh Technol 62(1):182–91.
Jawhar I, Mohamed N, Agrawal DP (2011) Linear wireless sensor networks: Classification and applications. Elsevier J Netw Comput Appl (JNCA) 34:1671–82.
Jawhar I, Mohamed N, Shuaib K (2007) A framework for pipeline infrastructure monitoring using wireless sensor networks In: The Sixth Annual Wireless Telecommunications Symposium (WTS 2007), IEEE Communication Society/ACM Sigmobile, Pomona, California, U.S.A, 1–7.
Jawhar I, Mohamed N, Al-Jaroodi J, Zhang S (2014) A framework for using unmanned aerial vehicles for data collection in linear wireless sensor networks. J Intell Robot Syst 74(1-2):437–453.
Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong ACK, Zhang JC (2014) What will 5g be?IEEE J Sel Areas Commun 32(6):1065–82.
Fallah YP, Huang C, Sengupta R, Krishnan H (2010) Design of cooperative vehicle safety systems based on tight coupling of communication, computing and physical vehicle dynamics In: Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical Systems, 159–167.. ACM.