Network pharmacology: the next paradigm in drug discovery
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–716 (2004).
Sams-Dodd, F. Target-based drug discovery: is something wrong? Drug Discov. Today 10, 139–147 (2005).
Zambrowicz, B.P. & Sands, A.T. Modeling drug action in the mouse with knockouts and RNA interference. Drug Discov. Today Targets 3, 198–207 (2004).
Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).
Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).
Deutschbauer, A.M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).
Zambrowicz, B.P., Turner, C.A. & Sands, A.T. Predicting drug efficacy: knockouts model pipeline drugs of the pharmaceutical industry. Curr. Opin. Pharmacol. 3, 563–570 (2003).
Zambrowicz, B.P. & Sands, A.T. Knockouts model the 100 best-selling drugs–will they model the next 100? Nat. Rev. Drug Discov. 2, 38–51 (2003).
Barabási, A.L. & Oltvai, Z.N. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5, 101–113 (2004).
Albert, R., Jeong, H. & Barabasi, A.L. Error and attack tolerance of complex networks. Nature 406, 378–382 (2000).
Chen, Y. et al. Variations in DNA elucidate molecular networks that cause disease. Nature 452, 429–435 (2008).
Csermely, P., Agoston, V. & Pongor, S. The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol. Sci. 26, 178–182 (2005).
Korcsmáros, T., Szalay, M.S., Böde, C., Kovács, I. & Csermely, P. How to design multi-target drugs: target search options in cellular networks. Expert Opin. Drug Discov. 2, 1–10 (2007).
Ooi, S.L. et al. Global synthetic-lethality analysis and yeast functional profiling. Trends Genet. 22, 56–63 (2006).
Hillenmeyer, M.E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).
Roth, B.L., Sheffler, D.J. & Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 353–359 (2004).
Wermuth, C.G. Multitarget drugs: the end of the 'one-target-one-disease' philosophy? Drug Discov. Today 9, 826–827 (2004).
Keith, C.T., Borisy, A.A. & Stockwel, B.R. Multicomponent therapeutics for networked systems. Nat. Rev. Drug Discov. 4, 71–78 (2005).
Petrelli, A. & Giordano, S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr. Med. Chem. 15, 422–432 (2008).
Mencher, S.K. & Wang, L.G. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin. Pharmacol. 5, 3 (2005).
Hopkins, A.L., Mason, J.S. & Overington, J.P. Can we rationally design promiscuous drugs? Curr. Opin. Struct. Biol. 16, 127–136 (2006).
Flordellis, C.S., Manolis, A.S., Paris, H. & Karabinis, A. Rethinking target discovery in polygenic diseases. Curr. Top. Med. Chem. 6, 1791–1798 (2006).
Dessalew, N. & Workalemahu, M. On the paradigm shift towards multitarget selective drug design. Curr. Comput. Aided Drug Des. 4, 76–90 (2008).
Keskin, O., Gursoy, A., Ma, B. & Nussinov, R. Towards drugs targeting multiple proteins in a systems biology approach. Curr. Top. Med. Chem. 7, 943–951 (2007).
Zimmermann, G.R., Lehár, J. & Keith, C.T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today 12, 34–42 (2007).
McGovern, S.L., Caselli, E., Grigorieff, N. & Shoichet, B.K. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem. 45, 1712–1722 (2002).
Kerkelä, R. et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat. Med. 12, 908–916 (2006).
Kaelin, W.G., Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689–698 (2005).
Gascoigne, K.E. & Taylor, S.S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).
Whitehurst, A.W. et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446, 815–819 (2007).
Turner, N.C. et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27, 1368–1377 (2008).
Gupta, G.P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).
Eltarhouny, S.A. et al. Genes controlling spread of breast cancer to lung “gang of 4”. Exp. Oncol. 30, 91–95 (2008).
Kitano, H. A robustness-based approach to systems-oriented drug design. Nat. Rev. Drug Discov. 6, 202–210 (2007).
Bond, R.A. Can intellectualism stifle scientific discovery? Nat. Rev. Drug Discov. 1, 825–829 (2002).
Dudekula, N., Arora, V., Callaerts-Vegh, Z. & Bond, R.A. The temporal hormesis of drug therapies. Dose Response 3, 414–424 (2006).
Schwartz, G.K. & Shah, M.A. Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol. 23, 9408–9421 (2005).
Mills, S.D. When will the genomics investment pay off for antibacterial discovery? Biochem. Pharmacol. 71, 1096–1102 (2006).
Pucci, M.J. Use of genomics to select antibacterial targets. Biochem. Pharmacol. 71, 1066–1072 (2006).
Payne, D.J., Gwynn, M.N., Holmes, D.J. & Rosenberg, M. Genomic approaches to antibacterial discovery. Methods Mol. Biol. 266, 231–259 (2004).
Payne, D.J., Gwynn, M.N., Holmes, D.J. & Pompliano, D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).
Lange, R.P., Locher, H.H., Wyss, P.C. & Then, R.L. The targets of currently used antibacterial agents: lessons for drug discovery. Curr. Pharm. Des. 13, 3140–3154 (2007).
Denome, S.A., Elf, P.K., Henderson, T.A., Nelson, D.E. & Young, K.D. Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J. Bacteriol. 181, 3981–3993 (1999).
Janoir, C., Zeller, V., Kitzis, M.D., Moreau, N.J. & Gutmann, L. High-level fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob. Agents Chemother. 40, 2760–2764 (1996).
Mayer, L.D. & Janoff, A.S. Optimizing combination chemotherapy by controlling drug ratios. Mol. Interv. 7, 216–223 (2007).
Dancey, J.E. & Chen, H.X. Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 5, 649–659 (2006).
Borisy, A.A. et al. Systematic discovery of multicomponent therapeutics. Proc. Natl. Acad. Sci. USA 100, 7977–7982 (2003).
Radhakrishnan, M.L. & Tidor, B. Optimal drug cocktail design: methods for targeting molecular ensembles and insights from theoretical model systems. J. Chem. Inf. Model. 48, 1055–1073 (2008).
Tsui, I.F., Chari, R., Buys, T.P. & Lam, W.L. Public databases and software for the pathway analysis of cancer genomes. Cancer Inform. 3, 389–407 (2007).
Swanson, D.R. Medical literature as a potential source of new knowledge. Bull. Med. Libr. Assoc. 78, 29–37 (1990).
Wren, J.D., Bekeredjian, R., Stewart, J.A., Shohet, R.V. & Garner, H.R. Knowledge discovery by automated identification and ranking of implicit relationships. Bioinformatics 20, 389–398 (2004).
Bekhuis, T. Conceptual biology, hypothesis discovery, and text mining: Swanson's legacy. Biomed. Digit. Libr. 3, 2 (2006).
Loging, W., Harland, L. & Williams-Jones, B. High-throughput electronic biology: mining information for drug discovery. Nat. Rev. Drug Discov. 6, 220–230 (2007).
Peirce, C.S. The Essential Peirce Vol. 2 (Indiana University Press, Bloomington, Indiana, USA, 1998).
Kell, D.B. & Oliver, S.G. Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26, 99–105 (2004).
Latora, V. & Marchiori, M. Vulnerability and protection of infrastructure networks. Phys. Rev. E 71, 015103R (2005).
Jeong, H., Mason, S.P., Barabási, A.L. & Oltvai, Z.N. Lethality and centrality in protein networks. Nature 411, 41–42 (2001).
Coulomb, S., Bauer, M., Bernard, D. & Marsolier-Kergoat, M.C. Gene essentiality and the topology of protein interaction networks. Proc. Biol. Sci. 272, 1721–1725 (2005).
Joy, M.P., Brock, A., Ingber, D.E. & Huang, S. High-betweenness proteins in the yeast protein interaction network. J. Biomed. Biotechnol. 2, 96–103 (2005).
Yu, H., Kim, P.M., Sprecher, E., Trifonov, V. & Gerstein, M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3, e59 (2007).
Hwang, W.C., Zhang, A. & Ramanathan, M. Identification of information flow-modulating drug targets: a novel bridging paradigm for drug discovery. Clin. Pharmacol. Ther. published online, doi:10.1038/clpt.2008.129 (9 July 2008).
Hahn, M.W. & Kern, A.D. Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22, 803–806 (2005).
Han, J.D. et al. Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88–93 (2004).
Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabási, A.L. & Vidal, M. Drug-target network. Nat. Biotechnol. 25, 1119–1126 (2007).
Nacher, J.C. & Schwartz, J.M. A global view of drug-therapy interactions. BMC Pharmacol. 8, 5 (2008).
Motter, A.E., Nishikawa, T. & Lai, Y. Range-based attack on links in scale-free networks: are long-range links responsible for the small-world phenomenon? Phys. Rev. E 66, 065103 (2002).
Moriya, H., Shimizu-Yoshida, Y. & Kitano, H. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet. 2, e111 (2006).
Wunderlich, Z. & Mirny, L.A. Using the topology of metabolic networks to predict viability of mutant strains. Biophys. J. 91, 2304–2311 (2006).
Kovacs, I., Csermely, P., Korcsmaros, T. & Szalay, M. WO patent application WO 2007-IB50471 2007 0213 (2007).
Watterson, S., Marshall, S. & Ghazal, P. Logic models of pathway biology. Drug Discov. Today 13, 447–456 (2008).
Gerber, S., Assmus, H., Bakker, B. & Klipp, E. Drug-efficacy depends on the inhibitor type and the target position in a metabolic network—a systematic study. J. Theor. Biol. 252, 442–455 (2008).
Potapov, A.P., Goemann, B. & Wingender, E. The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks. BMC Bioinformatics 9, 227 (2008).
Agoston, V., Csermely, P. & Pongor, S. Multiple weak hits confuse complex systems: a transcriptional regulatory network as an example. Phys. Rev. E 71, 051909 (2005).
Motter, A.E., Gulbahce, N., Almaas, E. & Barabási, A.L. Predicting synthetic rescues in metabolic networks. Mol. Syst. Biol. 4, 168 (2008).
Leeson, P.D. & Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6, 881–890 (2007).
Morphy, R., Kay, C. & Rankovic, Z. From magic bullets to designed multiple ligands. Drug Discov. Today 9, 641–651 (2004).
Morphy, R. & Rankovic, Z. The physicochemical challenges of designing multiple ligands. J. Med. Chem. 49, 4961–4970 (2006).
Hopkins, A.L. et al. Design of non-nucleoside inhibitors of HIV-1 reverse transcriptase with improved drug resistance properties. 1. J. Med. Chem. 47, 5912–5922 (2004).
Hann, M.M., Leach, A.R. & Harper, G. Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864 (2001).
Leach, A.R., Hann, M.M., Burrows, J.N. & Griffen, E.J. Fragment screening: an introduction. Mol. Biosyst. 2, 430–446 (2006).
Hopkins, A.L., Groom, C.R. & Alex, A. Ligand efficiency: a useful metric for lead selection. Drug Discov. Today 9, 430–431 (2004).
Morphy, R. & Rankovic, Z. Fragments, network biology and designing multiple ligands. Drug Discov. Today 12, 156–160 (2007).
Neumann, T., Junker, H.D., Schmidt, K. & Sekul, R. SPR-based fragment screening: advantages and applications. Curr. Top. Med. Chem. 7, 1630–1642 (2007).
Hämäläinen, M.D. et al. Label-free primary screening and affinity ranking of fragment libraries using parallel analysis of protein panels. J. Biomol. Screen. 13, 202–209 (2008).
Paolini, G.V., Shapland, R.H., van Hoorn, W.P., Mason, J.S. & Hopkins, A.L. Global mapping of pharmacological space. Nat. Biotechnol. 24, 805–815 (2006).
Wermuth, C.G. Selective optimization of side activities: another way for drug discovery. J. Med. Chem. 47, 1303–1314 (2004).
Wermuth, C.G. Selective optimization of side activities: the SOSA approach. Drug Discov. Today 11, 160–164 (2006).
Millan, M. Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol. Ther. 110, 135–370 (2006).
Ji, H.F. et al. Distribution patterns of small-molecule ligands in the protein universe and implications for origin of life and drug discovery. Genome Biol. 8, R176 (2007).
Kuhn, M., von Mering, C., Campillos, M., Jensen, L.J. & Bork, P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res. 36, D684–D688 (2008).
Günther, S. et al. SuperTarget and Matador: resources for exploring drug-target relationships. Nucleic Acids Res. 36, D919–D922 (2008).
Spiro, Z., Kovacs, I.A. & Csermely, P. Drug-therapy networks and the prediction of novel drug targets. J. Biol. 7, 20 (2008).
Bonchev, D. & Buck, G.A. From molecular to biological structure and back. J. Chem. Inf. Model. 47, 909–917 (2007).
Keiser, M.J. et al. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25, 197–206 (2007).
Hert, J., Keiser, M., Irwin, J., Oprea, T. & Shoichet, B. Quantifying the relationships among drug classes. J. Chem. Inf. Model. 48, 755–765 (2008).
Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W. & Kanehisa, M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24, i232–i240 (2008).
Kuhn, M., Campillos, M., González, P., Jensen, L.J. & Bork, P. Large-scale prediction of drug–target relationships. FEBS Lett. 582, 1283–1289 (2008).
Campillos, M., Kuhn, M., Gavin, A.C., Jensen, L.J. & Bork, P. Drug target identification using side-effect similarity. Science 321, 263–266 (2008).
Scott, M.S. & Barton, G.J. Probabilistic prediction and ranking of human protein-protein interactions. BMC Bioinformatics 8, 239 (2007).
Fliri, A.F., Loging, W.T., Thadeio, P.F. & Volkmann, R.A. Biospectra analysis: model proteome characterizations for linking molecular structure and biological response. J. Med. Chem. 48, 6918–6925 (2005).
Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).
Davies, J.R., Jackson, R.M., Mardia, K.V. & Taylor, C.C. The Poisson index: a new probabilistic model for protein ligand binding site similarity. Bioinformatics 23, 3001–3008 (2007).
Baroni, M., Cruciani, G., Sciabola, S., Perruccio, F. & Mason, J.S. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for ligands and proteins (FLAP): theory and application. J. Chem. Inf. Model. 47, 279–294 (2007).
Zhang, Z. & Grigorov, M.G. Similarity networks of protein binding sites. Proteins 62, 470–478 (2006).
Zhang, X., Crespo, A. & Fernández, A. Turning promiscuous kinase inhibitors into safer drugs. Trends Biotechnol. 26, 295–301 (2008).
Aronov, A.M., McClain, B., Moody, C.S. & Murcko, M.A. Kinase-likeness and kinase-privileged fragments: toward virtual polypharmacology. J. Med. Chem. 51, 1214–1222 (2008).
Jenwitheesuk, E., Horst, J.A., Rivas, K.L., Van Voorhis, W.C. & Samudrala, R. Novel paradigms for drug discovery: computational multitarget screening. Trends Pharmacol. Sci. 29, 62–71 (2008).
Van Gestel, S. & Schuermans, V. Thirty-three years of drug discovery and research with Dr. Paul Janssen. Drug Dev. Res. 8, 1–13 (1986).
Overington, J.P., Al-Lazikani, B. & Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).
Fabian, M.A. et al. A small molecule−kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329–336 (2005).