Network distribution of molybdenum among pure titanium powders for enhanced wear properties

Metal Powder Report - Tập 76 - Trang 32-39 - 2021
Ridvan Yamanoglu1
1Kocaeli University, Department of Metallurgical and Materials Engineering, 41001 Kocaeli, Turkey

Tóm tắt

A homogeneous network distribution of molybdenum particles among pure titanium particles was successfully produced by powder metallurgy. The Ti–xMo mixtures were consolidated by uniaxial hot pressing under a 10−4 mbar vacuum atmosphere at 950 °C for 30 min. The distribution of the molybdenum particles in the structure was investigated by optical and scanning electron microscopy in polished and etched conditions. The dry sliding wear properties of the Ti–xMo compacts and the Ti6Al4V alloy was carried out using a ball on disc test using a 250 m distance, 150 rpm and 20 N load. 100Cr6 steel was selected as the counterface material during the wear tests. The results showed that titanium alloy with a content of 10 wt.% Mo has the highest wear resistance within the Ti–xMo alloys. In addition, Ti–10Mo alloys showed an intensive wear resistance compared to the Ti6Al4V alloy.

Tài liệu tham khảo

Yamanoglu R., 2018, Powder Metall., 61, 178, 10.1080/00325899.2018.1441777 Fujii H., 2003, Shinnittetsu giho, 62 Leyens C., 2003, Titanium and Titanium Alloys: Fundamentals and Applications, 10.1002/3527602119 Attar H., 2015, Mater. Lett., 142, 38, 10.1016/j.matlet.2014.11.156 Qin Y., 2011, J. Mater. Sci., 46, 4980, 10.1007/s10853-011-5415-x Revankar G.D., 2017, J. Mater. Res. Technol., 6, 13, 10.1016/j.jmrt.2016.03.007 Zi-Run Y., 2017, Int. J. Precis. Eng. Manuf., 18, 1139, 10.1007/s12541-017-0133-1 Chauhan S.R., 2013, Adv. Tribol., 2013, 1, 10.1155/2013/272106 Qin Y., 2012, J. Compos. Mater., 46, 2637, 10.1177/0021998311417645 Hu Y., 2018, Opt. Laser Technol., 99, 174, 10.1016/j.optlastec.2017.08.032 Fujii T., 2018, J. Alloy. Compd., 744, 759, 10.1016/j.jallcom.2018.02.142 Kim J.-S., 2013, Wear, 301, 562, 10.1016/j.wear.2012.12.041 An Q., 2018, Tribol. Int., 121, 252, 10.1016/j.triboint.2018.01.053 Zhou Y.-L., 2011, Mater. Charact., 62, 931, 10.1016/j.matchar.2011.07.010 Zhou Y.-L., 2011, J. Alloy. Compd., 509, 6267, 10.1016/j.jallcom.2011.03.045 Zhang W.-D., 2015, Mater. Charact., 106, 302, 10.1016/j.matchar.2015.06.008 Martins J.R.S., 2016, Arch. Metall. Mater., 61, 25, 10.1515/amm-2016-0011 Li J., 2004, J Cent. South Univ. Technol., 11, 15, 10.1007/s11771-004-0003-8 Yamanoglu R., 2018, Biomed. Mater., 13, 10.1088/1748-605X/aa957d Vishnu D.S.M., 2009, Mater. Sci. Eng., C, 96, 466, 10.1016/j.msec.2018.11.025 Khaleghi F., 2019, J. Alloy. Compd., 787, 882, 10.1016/j.jallcom.2019.02.142 Szaraniec B., 2017, J. Alloy. Compd., 709, 464, 10.1016/j.jallcom.2017.03.155 Liu Y., 2015, J. Mech. Behav. Biomed. Mater., 51, 302, 10.1016/j.jmbbm.2015.07.004