Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích mạng lưới của các động mạch vành trước trái ở chuột bơi lội được đào tạo bằng kỹ thuật vi mô video tại chỗ
Tóm tắt
Chúng tôi nhằm mục đích xác định sự khác biệt về giới tính trong các đặc điểm mạng lưới và nhận biết tác động của sự thay đổi hình học do tập bơi lâu dài trong mô hình chuột bị tăng huyết áp thất trái (LV) do tập thể dục. Ba mươi tám con chuột Wistar được chia thành bốn nhóm: nhóm ngồi yên đực, nhóm ngồi yên cái, nhóm tập thể dục đực và nhóm tập thể dục cái. Sau các buổi tập, hình thái và chức năng của LV được kiểm tra bằng siêu âm tim. Hình học của hệ thống động mạch vành trái được phân tích trên mạng lưới động mạch kháng lực đã chuẩn bị vi phẫu, được tưới máu bằng áp lực sử dụng kỹ thuật vi hình học video tại chỗ. Tất cả các đoạn có đường kính trên 80 μm được nghiên cứu sử dụng các đơn vị vòng hình trụ dài 50 μm được chia nhỏ từ các mạng lưới. Các dấu hiệu căng thẳng oxy-nitrat (O-N), thụ thể adenosine A2A và estrogen (ER) đã được điều tra bằng phương pháp miễn dịch hóa mô. Chỉ số khối lượng LV, phân suất tống máu và sự rút ngắn phân đoạn đã tăng đáng kể ở các động vật đã tập thể dục. Chúng tôi phát hiện ra sự khác biệt đáng kể về giới tính trong mạng lưới mạch vành ở các nhóm kiểm soát và ở các động vật được huấn luyện bơi. Quang phổ tần số vòng có sự khác biệt đáng kể giữa động vật đực và cái trong cả hai nhóm ngồi yên và đã tập luyện. Độ dày của thành mạch cao hơn ở động vật đực do kết quả của việc tập luyện. Có sự gia tăng ở các quần thể động mạch có đường kính 200- và 400-μm ở động vật đực; những cái mảnh hơn phát triển xa hơn và những cái dày hơn phát triển gần hơn tới lỗ mở. Ở động vật cái, một quần thể mới của các mạch có đường kính từ 200 đến 250 μm xuất hiện gần bất thường với lỗ mở. Hoạt động thể chất và tăng huyết áp LV đi kèm với việc tái cấu trúc hình học của mạng lưới động mạch kháng lực vành theo cách khác nhau ở cả hai giới.
Từ khóa
#giới tính #tăng huyết áp thất trái #bơi lội #động mạch vành #vi hình học video #tái cấu trúc mạch máuTài liệu tham khảo
Neglia D, Liga R, Caselli C, Carpeggiani C, Lorenzoni V, Sicari R, et al. Anatomical and functional coronary imaging to predict long-term outcome in patients with suspected coronary artery disease: the EVINCI-outcome study. Eur Heart J Cardiovasc Imaging 2020;21(11):1273–82. https://doi.org/10.1093/ehjci/jez248.
Yang TP, Pohost GM. Magnetic resonance coronary angiography. Am Heart Hosp J. 2003;1(2):141–8, 63. https://doi.org/10.1111/j.1541-9215.2003.02089.x.
Liga R, Vontobel J, Rovai D, Marinelli M, Caselli C, Pietila M, et al. Multicentre multi-device hybrid imaging study of coronary artery disease: results from the EValuation of INtegrated Cardiac Imaging for the Detection and Characterization of Ischaemic Heart Disease (EVINCI) hybrid imaging population. Eur Heart J Cardiovasc Imaging. 2016;17(9):951–60. https://doi.org/10.1093/ehjci/jew038.
Garcia-Canadilla P, de Vries T, Gonzalez-Tendero A, Bonnin A, Gratacos E, Crispi F, et al. Structural coronary artery remodelling in the rabbit fetus as a result of intrauterine growth restriction. PLoS One. 2019;14(6):e0218192. https://doi.org/10.1371/journal.pone.0218192.
Mittal TK, Pottle A, Nicol E, Barbir M, Ariff B, Mirsadraee S, et al. Prevalence of obstructive coronary artery disease and prognosis in patients with stable symptoms and a zero-coronary calcium score. Eur Heart J Cardiovasc Imaging. 2017;18(8):922–9. https://doi.org/10.1093/ehjci/jex037.
Monori-Kiss A, Antal P, Szekeres M, Varbiro S, Fees A, Szekacs B, et al. Morphological remodeling of the intramural coronary resistance artery network geometry in chronically Angiotensin II infused hypertensive female rats. Heliyon. 2020;6(4):e03807. https://doi.org/10.1016/j.heliyon.2020.e03807.
Wappler EA, Antal P, Varbiro S, Szekacs B, Simon A, Nagy Z, et al. Network remodeling of intramural coronary resistance arteries in the aged rat: a statistical analysis of geometry. Mech Ageing Dev. 2013;134(7-8):307–13. https://doi.org/10.1016/j.mad.2013.03.002.
Tomanek RJ, Aydelotte MR, Butters CA. Late-onset renal hypertension in old rats alters myocardial microvessels. Am J Physiol. 1990;259(6 Pt 2):H1681–7. https://doi.org/10.1152/ajpheart.1990.259.6.H1681.
Anversa P, Li P, Sonnenblick EH, Olivetti G. Effects of aging on quantitative structural properties of coronary vasculature and microvasculature in rats. Am J Physiol. 1994;267(3 Pt 2):H1062–73. https://doi.org/10.1152/ajpheart.1994.267.3.H1062.
Lahtinen M, Toukola T, Junttila MJ, Piira OP, Lepojarvi S, Kaariainen M, et al. Effect of changes in physical activity on risk for cardiac death in patients with coronary artery disease. Am J Cardiol. 2018;121(2):143–8. https://doi.org/10.1016/j.amjcard.2017.10.002.
Parsons C, Agasthi P, Mookadam F, Arsanjani R. Reversal of coronary atherosclerosis: Role of life style and medical management. Trends Cardiovasc Med. 2018;28(8):524–31. https://doi.org/10.1016/j.tcm.2018.05.002.
Mury P, Chirico EN, Mura M, Millon A, Canet-Soulas E, Pialoux V. Oxidative stress and inflammation, key targets of atherosclerotic plaque progression and vulnerability: potential impact of physical activity. Sports Med (Auckland, NZ). 2018;48(12):2725–41.
Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88(3):1009–86. https://doi.org/10.1152/physrev.00045.2006.
Fernandes T, Barretti DL, Phillips MI, Menezes OE. Exercise training prevents obesity-associated disorders: role of miRNA-208a and MED13. Mol Cell Endocrinol. 2018;476:148–54. https://doi.org/10.1016/j.mce.2018.05.004.
Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol. 2012;302(1):H10–23. https://doi.org/10.1152/ajpheart.00574.2011.
Szekeres M, Nadasy GL, Dornyei G, Szenasi A, Koller A. Remodeling of wall mechanics and the myogenic mechanism of rat intramural coronary arterioles in response to a short-term daily exercise program: role of endothelial factors. J Vasc Res. 2018;55(2):87–97. https://doi.org/10.1159/000486571.
Matrai M, Mericli M, Nadasy GL, Szekeres M, Varbiro S, Banhidy F, et al. Gender differences in biomechanical properties of intramural coronary resistance arteries of rats, an in vitro microarteriographic study. J Biomech. 2007;40(5):1024–30. https://doi.org/10.1016/j.jbiomech.2006.04.002.
Green DJ, Hopman MT, Padilla J, Laughlin MH, Thijssen DH. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev. 2017;97(2):495–528. https://doi.org/10.1152/physrev.00014.2016.
Heaps CL, Sturek M, Rapps JA, Laughlin MH, Parker JL. Exercise training restores adenosine-induced relaxation in coronary arteries distal to chronic occlusion. Am J Physiol Heart Circ Physiol. 2000;278(6):H1984–92. https://doi.org/10.1152/ajpheart.2000.278.6.H1984.
Delaney LE, Arce-Esquivel AA, Kuroki K, Laughlin MH. Exercise training improves vasoreactivity in the knee artery. Int J Sports Med. 2012;33(2):114–22. https://doi.org/10.1055/s-0031-1291186.
Laughlin MH, Oltman CL, Bowles DK. Exercise training-induced adaptations in the coronary circulation. Med Sci Sports Exerc. 1998;30(3):352–60. https://doi.org/10.1097/00005768-199803000-00004.
Hwang IC, Kim KH, Choi WS, Kim HJ, Im MS, Kim YJ, et al. Impact of acute exercise on brachial artery flow-mediated dilatation in young healthy people. Cardiovasc Ultrasound. 2012;10(1):39. https://doi.org/10.1186/1476-7120-10-39.
Pahkala K, Heinonen OJ, Lagstrom H, Hakala P, Simell O, Viikari JS, et al. Vascular endothelial function and leisure-time physical activity in adolescents. Circulation. 2008;118(23):2353–9. https://doi.org/10.1161/CIRCULATIONAHA.108.791988.
Pierce GL, Eskurza I, Walker AE, Fay TN, Seals DR. Sex-specific effects of habitual aerobic exercise on brachial artery flow-mediated dilation in middle-aged and older adults. Clin Sci (London, England : 1979). 2011;120(1):13–23.
Torok M, Monori-Kiss A, Pal E, Horvath E, Josvai A, Merkely P, et al. Long-term exercise results in morphological and biomechanical changes in coronary resistance arterioles in male and female rats. Biol Sex Differ. 2020;11(1):7. https://doi.org/10.1186/s13293-020-0284-0.
Kibel A, Lukinac AM, Dambic V, Juric I, Relatic KS. Oxidative stress in ischemic heart disease. Oxidative Med Cell Longev. 2020;2020:6627144.
Milanesi E, Manda G, Dobre M, Codrici E, Neagoe IV, Popescu BO, et al. Distinctive under-expression profile of inflammatory and redox genes in the blood of elderly patients with cardiovascular disease. J Inflamm Res. 2021;14:429–42. https://doi.org/10.2147/JIR.S280328.
Mesquita PHC, Lamb DA, Godwin JS, Osburn SC, Ruple BA, Moore JH, et al. Effects of resistance training on the redox status of skeletal muscle in older adults. Antioxidants (Basel). 2021;10(3):350.
Thirupathi A, Wang M, Lin JK, Fekete G, István B, Baker JS, et al. Effect of different exercise modalities on oxidative stress: a systematic review. Biomed Res Int. 2021;2021:1947928.
Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition. 2015;31(7-8):916–22. https://doi.org/10.1016/j.nut.2015.02.005.
Castro JP, Jung T, Grune T, Siems W. 4-Hydroxynonenal (HNE) modified proteins in metabolic diseases. Free Radic Biol Med. 2017;111:309–15. https://doi.org/10.1016/j.freeradbiomed.2016.10.497.
Horváth EM, Magenheim R, Kugler E, Vácz G, Szigethy A, Lévárdi F, et al. Nitrative stress and poly(ADP-ribose) polymerase activation in healthy and gestational diabetic pregnancies. Diabetologia. 2009;52(9):1935–43. https://doi.org/10.1007/s00125-009-1435-3.
Tóth-Zsámboki E, Horváth E, Vargova K, Pankotai E, Murthy K, Zsengellér Z, et al. Activation of poly(ADP-ribose) polymerase by myocardial ischemia and coronary reperfusion in human circulating leukocytes. Mol Med. 2006;12(9-10):221–8. https://doi.org/10.2119/2006-00055.Toth-Zsamboki.
Ahsan H. 3-Nitrotyrosine: a biomarker of nitrogen free radical species modified proteins in systemic autoimmunogenic conditions. Hum Immunol. 2013;74(10):1392–9. https://doi.org/10.1016/j.humimm.2013.06.009.
Duncan MW. A review of approaches to the analysis of 3-nitrotyrosine. Amino Acids. 2003;25(3-4):351–61. https://doi.org/10.1007/s00726-003-0022-z.
Xia N, Förstermann U, Li H. Effects of resveratrol on eNOS in the endothelium and the perivascular adipose tissue. Ann N Y Acad Sci. 2017;1403(1):132–41. https://doi.org/10.1111/nyas.13397.
Dong Y, Sun Q, Liu T, Wang H, Jiao K, Xu J, et al. Nitrative stress participates in endothelial progenitor cell injury in hyperhomocysteinemia. PLoS One. 2016;11(7):e0158672. https://doi.org/10.1371/journal.pone.0158672.
Paganelli F, Gaudry M, Ruf J, Guieu R. Recent advances in the role of the adenosinergic system in coronary artery disease. Cardiovasc Res. 2021;117(5):1284–94. https://doi.org/10.1093/cvr/cvaa275.
Olver TD, Ferguson BS, Laughlin MH. Molecular mechanisms for exercise training-induced changes in vascular structure and function: skeletal muscle, cardiac muscle, and the brain. Prog Mol Biol Transl Sci. 2015;135:227–57. https://doi.org/10.1016/bs.pmbts.2015.07.017.
Calvert JW, Condit ME, Aragón JP, Nicholson CK, Moody BF, Hood RL, et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of β(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res. 2011;108(12):1448–58. https://doi.org/10.1161/CIRCRESAHA.111.241117.
Farah C, Kleindienst A, Bolea G, Meyer G, Gayrard S, Geny B, et al. Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites. Basic Res Cardiol. 2013;108(6):389. https://doi.org/10.1007/s00395-013-0389-2.
Farah C, Nascimento A, Bolea G, Meyer G, Gayrard S, Lacampagne A, et al. Key role of endothelium in the eNOS-dependent cardioprotection with exercise training. J Mol Cell Cardiol. 2017;102:26–30. https://doi.org/10.1016/j.yjmcc.2016.11.008.
Iorga A, Umar S, Ruffenach G, Aryan L, Li J, Sharma S, et al. Estrogen rescues heart failure through estrogen receptor Beta activation. Biol Sex Differ. 2018;9(1):48. https://doi.org/10.1186/s13293-018-0206-6.
Mathews L, Iantorno M, Schar M, Bonanno G, Gerstenblith G, Weiss RG, et al. Coronary endothelial function is better in healthy premenopausal women than in healthy older postmenopausal women and men. PLoS One. 2017;12(10):e0186448. https://doi.org/10.1371/journal.pone.0186448.
Radovits T, Olah A, Lux A, Nemeth BT, Hidi L, Birtalan E, et al. Rat model of exercise-induced cardiac hypertrophy: hemodynamic characterization using left ventricular pressure-volume analysis. Am J Physiol Heart Circ Physiol. 2013;305(1):H124–34. https://doi.org/10.1152/ajpheart.00108.2013.
Kovacs A, Olah A, Lux A, Matyas C, Nemeth BT, Kellermayer D, et al. Strain and strain rate by speckle-tracking echocardiography correlate with pressure-volume loop-derived contractility indices in a rat model of athlete's heart. Am J Physiol Heart Circ Physiol. 2015;308(7):H743–8. https://doi.org/10.1152/ajpheart.00828.2014.
Teichholz LE, Kreulen T, Herman MV, Gorlin R. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol. 1976;37(1):7–11. https://doi.org/10.1016/0002-9149(76)90491-4.
Nadasy GL, Szekeres M, Dezsi L, Varbiro S, Szekacs B, Monos E. Preparation of intramural small coronary artery and arteriole segments and resistance artery networks from the rat heart for microarteriography and for in situ perfusion video mapping. Microvasc Res. 2001;61(3):282–6. https://doi.org/10.1006/mvre.2000.2297.
Dworatzek E, Mahmoodzadeh S, Schubert C, Westphal C, Leber J, Kusch A, et al. Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta. Cardiovasc Res. 2014;102(3):418–28. https://doi.org/10.1093/cvr/cvu065.
Olah A, Matyas C, Kellermayer D, Ruppert M, Barta BA, Sayour AA, et al. Sex differences in morphological and functional aspects of exercise-induced cardiac hypertrophy in a rat model. Front Physiol. 2019;10:889. https://doi.org/10.3389/fphys.2019.00889.
Olah A, Kovacs A, Lux A, Tokodi M, Braun S, Lakatos BK, et al. Characterization of the dynamic changes in left ventricular morphology and function induced by exercise training and detraining. Int J Cardiol. 2019;277:178–85. https://doi.org/10.1016/j.ijcard.2018.10.092.
Lewicka-Potocka Z, Dabrowska-Kugacka A, Lewicka E, Kaleta AM, Dorniak K, Danilowicz-Szymanowicz L, et al. The "athlete's heart" features in amateur male marathon runners. Cardiol J. 2020. https://doi.org/10.5603/CJ.a2019.0110.
Finocchiaro G, Dhutia H, D'Silva A, Malhotra A, Steriotis A, Millar L, et al. Effect of sex and sporting discipline on LV adaptation to exercise. J Am Coll Cardiol Img. 2017;10(9):965–72. https://doi.org/10.1016/j.jcmg.2016.08.011.
Konhilas JP, Maass AH, Luckey SW, Stauffer BL, Olson EN, Leinwand LA. Sex modifies exercise and cardiac adaptation in mice. Am J Physiol Heart Circ Physiol. 2004;287(6):H2768–76. https://doi.org/10.1152/ajpheart.00292.2004.
Foryst-Ludwig A, Kreissl MC, Sprang C, Thalke B, Bohm C, Benz V, et al. Sex differences in physiological cardiac hypertrophy are associated with exercise-mediated changes in energy substrate availability. Am J Physiol Heart Circ Physiol. 2011;301(1):H115–22. https://doi.org/10.1152/ajpheart.01222.2010.
Murray CD. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci U S A. 1926;12(3):207–14. https://doi.org/10.1073/pnas.12.3.207.
Green DJ, Spence A, Rowley N, Thijssen DH, Naylor LH. Vascular adaptation in athletes: is there an 'athlete's artery'? Exp Physiol. 2012;97(3):295–304. https://doi.org/10.1113/expphysiol.2011.058826.
Thijssen DH, Dawson EA, van den Munckhof IC, Birk GK, Timothy Cable N, Green DJ. Local and systemic effects of leg cycling training on arterial wall thickness in healthy humans. Atherosclerosis. 2013;229(2):282–6. https://doi.org/10.1016/j.atherosclerosis.2013.05.013.
Ellison GM, Waring CD, Vicinanza C, Torella D. Physiological cardiac remodelling in response to endurance exercise training: cellular and molecular mechanisms. Heart. 2012;98(1):5–10. https://doi.org/10.1136/heartjnl-2011-300639.
Verboven M, Cuypers A, Deluyker D, Lambrichts I, Eijnde BO, Hansen D, et al. High intensity training improves cardiac function in healthy rats. Sci Rep. 2019;9(1):5612. https://doi.org/10.1038/s41598-019-42023-1.
Li Y, Cai M, Cao L, Qin X, Zheng T, Xu X, et al. Endurance exercise accelerates myocardial tissue oxygenation recovery and reduces ischemia reperfusion injury in mice. PLoS One. 2014;9(12):e114205. https://doi.org/10.1371/journal.pone.0114205.
Garza MA, Wason EA, Zhang JQ. Cardiac remodeling and physical training post myocardial infarction. World J Cardiol. 2015;7(2):52–64. https://doi.org/10.4330/wjc.v7.i2.52.
Ardakanizade M. The effects of mid- and long-term endurance exercise on heart angiogenesis and oxidative stress. Iran J Basic Med Sci. 2018;21(8):800–5. https://doi.org/10.22038/IJBMS.2018.27211.6814.
Agarwala A, Michos ED, Samad Z, Ballantyne CM, Virani SS. The use of sex-specific factors in the assessment of women's cardiovascular risk. Circulation. 2020;141(7):592–9. https://doi.org/10.1161/CIRCULATIONAHA.119.043429.
Brown JC, Gerhardt TE, Kwon E. Risk factors for coronary artery disease. StatPearls. Treasure Island: StatPearls Publishing StatPearls Publishing LLC; 2020.
Newson L. Menopause and cardiovascular disease. Post Reprod Health. 2018;24(1):44–9. https://doi.org/10.1177/2053369117749675.
Schreinlechner M, Noflatscher M, Reinstadler SJ, Sommer P, Lener D, Reiser E, et al. Early onset of menopause is associated with increased peripheral atherosclerotic plaque volume and progression. Atherosclerosis. 2020;297:25–31. https://doi.org/10.1016/j.atherosclerosis.2020.01.023.
Umar S, Iorga A, Matori H, Nadadur RD, Li J, Maltese F, et al. Estrogen rescues preexisting severe pulmonary hypertension in rats. Am J Respir Crit Care Med. 2011;184(6):715–23. https://doi.org/10.1164/rccm.201101-0078OC.
Nikolic I, Liu D, Bell JA, Collins J, Steenbergen C, Murphy E. Treatment with an estrogen receptor-beta-selective agonist is cardioprotective. J Mol Cell Cardiol. 2007;42(4):769–80. https://doi.org/10.1016/j.yjmcc.2007.01.014.
Pedram A, Razandi M, O'Mahony F, Lubahn D, Levin ER. Estrogen receptor-beta prevents cardiac fibrosis. Mol Endocrinol (Baltimore, Md). 2010;24(11):2152–65.
Wang M, Crisostomo PR, Markel T, Wang Y, Lillemoe KD, Meldrum DR. Estrogen receptor beta mediates acute myocardial protection following ischemia. Surgery. 2008;144(2):233–8. https://doi.org/10.1016/j.surg.2008.03.009.
Pelzer T, Loza PA, Hu K, Bayer B, Dienesch C, Calvillo L, et al. Increased mortality and aggravation of heart failure in estrogen receptor-beta knockout mice after myocardial infarction. Circulation. 2005;111(12):1492–8. https://doi.org/10.1161/01.CIR.0000159262.18512.46.
Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest. 2005;115(8):2108–18. https://doi.org/10.1172/JCI24682.
Elkin M, Orgel A, Kleinman HK. An angiogenic switch in breast cancer involves estrogen and soluble vascular endothelial growth factor receptor 1. J Natl Cancer Inst. 2004;96(11):875–8. https://doi.org/10.1093/jnci/djh140.
Regitz-Zagrosek V, Kararigas G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol Rev. 2017;97(1):1–37. https://doi.org/10.1152/physrev.00021.2015.
Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol. 2018;14(3):185–201. https://doi.org/10.1038/nrneph.2017.189.
Sabbatino F, Conti V, Liguori L, Polcaro G, Corbi G, Manzo V, et al. Molecules and mechanisms to overcome oxidative stress inducing cardiovascular disease in cancer patients. Life (Basel). 2021;11(2):105.
Huang YC, Cheng ML, Tang HY, Huang CY, Chen KM, Wang JS. Eccentric cycling training improves erythrocyte antioxidant and oxygen releasing capacity associated with enhanced anaerobic glycolysis and intracellular acidosis. Antioxidants (Basel). 2021;10(2):285.
Kraus RM, Stallings HW 3rd, Yeager RC, Gavin TP. Circulating plasma VEGF response to exercise in sedentary and endurance-trained men. J Appl Physiol (Bethesda, Md : 1985). 2004;96(4):1445–50.
Brenner DR, Ruan Y, Adams SC, Courneya KS, Friedenreich CM. The impact of exercise on growth factors (VEGF and FGF2): results from a 12-month randomized intervention trial. Eur Rev Aging Phys Act. 2019;16(1):8. https://doi.org/10.1186/s11556-019-0215-4.
Amaral SL, Sanchez LS, Chang AJ, Rossoni LV, Michelini LC. Time course of training-induced microcirculatory changes and of vegf expression in skeletal muscles of spontaneously hypertensive female rats. Braz J Med Biol Res. 2008;41(5):424–31. https://doi.org/10.1590/S0100-879X2008000500012.
Grenz A, Homann D, Eltzschig HK. Extracellular adenosine: a safety signal that dampens hypoxia-induced inflammation during ischemia. Antioxid Redox Signal. 2011;15(8):2221–34. https://doi.org/10.1089/ars.2010.3665.
von Versen-Höynck F, Rajakumar A, Bainbridge SA, Gallaher MJ, Roberts JM, Powers RW. Human placental adenosine receptor expression is elevated in preeclampsia and hypoxia increases expression of the A2A receptor. Placenta. 2009;30(5):434–42. https://doi.org/10.1016/j.placenta.2009.02.004.