Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chỉ số tiềm năng ấm lên toàn cầu ròng thay vì thay đổi trữ lượng carbon trong đất có thể cung cấp cái nhìn tốt hơn về cân bằng carbon trong các hệ thống đất
Tóm tắt
Nghiên cứu này được thực hiện nhằm xác định yếu tố thay đổi trữ lượng carbon hữu cơ trong đất (SOC) cho các loại cây phân xanh đã được phát triển bởi Ủy ban Liên Chính phủ về Biến đổi Khí hậu (IPCC) theo phương pháp Cấp 2 và so sánh với chỉ số tiềm năng ấm lên toàn cầu (GWP) ròng được sử dụng để đánh giá sự đóng góp của việc sử dụng phân xanh vào sự ấm lên toàn cầu. Bốn biện pháp được thử nghiệm gồm lúa mạch (Hordeum vulgare L.; B), đậu tóc (Vicia villosa R.; HV), hỗn hợp lúa mạch / đậu tóc (BHV) và biện pháp xử lý thông thường (C). Sinh khối trên mặt đất của các loại cây phân xanh đã được đưa vào đất vào các ngày 25 tháng 5 năm 2018, 26 tháng 4 năm 2019, 29 tháng 4 năm 2020, 30 tháng 4 năm 2021 và 2 tháng 5 năm 2022. Ngô (Zea mays L.) được trồng như là cây thu hoạch tiếp theo sau khi đưa cây phân xanh vào đất. Trữ lượng SOC đã giảm với sự có mặt của phân xanh, mặc dù đầu vào carbon với các loại cây phân xanh, bao gồm B, HV và BHV, cao hơn so với C. Giá trị trung bình của yếu tố thay đổi trữ lượng SOC cho các loại cây phân xanh, bao gồm B, HV và BHV là 0.627 và thấp hơn đáng kể so với C. Tuy nhiên, GWP ròng cũng giảm với việc nhập phân xanh vào đất, và giá trị trung bình của chỉ số tương đối GWP ròng trên B, HV và BHV là 0.853. Những kết quả mâu thuẫn này được gây ra bởi các phương pháp ước tính khác nhau giữa sự thay đổi SOC hàng năm (△SOC) và GWP ròng. Việc ước tính thay đổi trữ lượng SOC bằng △SOC theo phương pháp IPCC có thể ước tính quá cao về sự đóng góp của cây phân xanh vào sự ấm lên toàn cầu. Phương pháp GWP ròng với sự đầu vào và đầu ra carbon toàn diện trong hệ thống đất có thể cung cấp cái nhìn tốt hơn về cân bằng carbon trong các hệ thống đất. Trong nghiên cứu này, việc so sánh △SOC và GWP ròng được thực hiện tại một địa điểm của đất cao nguyên trong 5 năm. Do đó, cần thực hiện nghiên cứu thêm về việc ước tính tác động của cây phân xanh đến GWP ròng trong các loại đất khác nhau trong nhiều năm hơn.
Từ khóa
Tài liệu tham khảo
Alluvione F, Bertora C, Zavattaro L, Grignani C (2010) Nitrous oxide and carbon dioxide emissions following green manure and compost fertilization in corn. Soil Sci Soc Am J 74(2):384–395
Ansari M, Choudhury BU, Layek J, Das A, Lal R, Mhishra VK (2022) Green manuring and crop residue management: effect on soil organic carbon stock, aggregation, and system productivity in the foothills of Eastern Himalaya (India). Soil Tillage Res 218:105318
Anugroho F, Kitou M, Nagumo F, Kinjo K, Tokashiki Y (2009) Growth, nitrogen fixation, and nutrient uptake of hairy vetch as a cover crop in a subtropical region. Weed Biol Manag 9(1):63–71. https://doi.org/10.1111/j.1445-6664.2008.00319.x
Boardman DL, Easterby S, Clark KM, Kitchen NR, Staples JS, Reinbott TM, Kremer RJ (2018) Do tillage, cover crops, and compost management within organic grain cropping affect greenhouse gas emissions? Agron J 110(5):1633–2111
Bolinder M, Janzen H, Gregorich E, Angers D, VandenBygaart AJA (2007) An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric Ecosyst Environ 118:29–42
Bolinder MA et al (2020) The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems. A synthesis of reviews. Mitig Adapt Strateg Glob Change 168:25. https://doi.org/10.1007/s11027-020-09916-3
Brady NC, Weil RR (2010) Elements of the Nature and Properties of Soils, 3rd edn. Pearson, New Jersey, p 370
Cates AM, Jackson RD (2018) Cover crop effects on net ecosystem carbon balance in grain and silage maize. J Agron 110:1–9. https://doi.org/10.2134/agronj2018.01.0045
Chapin F et al (2006) Reconciling carbon-cycle concepts terminology, and methods. Ecosystems 9(7):1041–1050
Davenport J, Thomas RL (1988) Carbon partitioning and rhizodeposition in corn and bromegrass. Can J Soil Sci 68(4):693–701. https://doi.org/10.4141/cjss88-067
Elfstrand S, Hedlund K, Mårtensson A (2007) Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring. Appl Soil Ecol 35:610–621
Eve MD, Sperow M, Paustian K, Follett RF (2002) National-scale estimation of changes in soil carbon stocks on agricultural lands. Environ Pollut 116:431–438
Forte A, Fagnano M, Fierro A (2017) Potential role of compost and green manure amendment to mitigate soil GHGs emissions in Mediterranean drip irrigated maize production systems. J Environ Manag 192:68–78. https://doi.org/10.1016/j.jenvman.2017.01.037
Gomes J, Bayer C, Costa FS, Piccolo MC, Zanatta JA, Vieira FCB, Six J (2009) Soil nitrous oxide emissions in long-term cover crops-based rotations under subtropical climate. Soil Res 106(1):36–44. https://doi.org/10.1016/j.still.2009.10.001
Gregorich EG, Carter MR, Angers DA, Monreal CM, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74:367–385
Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57(1):2–12. https://doi.org/10.1111/j.1365-2389.2005.00778.x
Haque MM, Kim SY, Ali MA, Kim PJ (2015) Contribution of greenhouse gas emissions during cropping and fallow seasons on total global warming potential in mono-rice paddy soils. Plant Soil 387(1–2):251–264. https://doi.org/10.1007/s11104-014-2287-2
Haque MM, Biswas JC, Kim SY, Kim PJ (2016) Intermittent drainage in paddy soil: ecosystem carbon budget and global warming potential. Paddy Water Environ 15(2):403–411. https://doi.org/10.1007/s10333-016-0558-7
Hwang HY, Kim GW, Kim SY, Haque MM, Khan MI, Kim PJ (2017) Effect of cover cropping on the net global warming potential of rice paddy soil. Geoderma 292:19–58
IPCC (2006) Cropland. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (ed) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume IV, chapter 5. The National Greenhouse Gas Inventories Programme, Intergovern- mental Panel on Climate Change, Hayama, Kanagawa, Japan, pp 5.1–5.66
IPCC (2019) Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Core Writing Team, Calvo E, Guendehou S, Limmeechokchai B, Pipatti R, Rojas Y, Sturgiss R, Tanabe K, Wirth T (ed) IPCC: Geneva, Switzerland, Volume 5, pp 194
Lee JG, Hwang HY, Park MH, Lee CH, Kim PJ (2019) Depletion of soil organic carbon stocks are larger under plastic film mulching for maize. Eur J Soil Sci 70(4):713–933
Lee HH, Kim SU, Han HR, Hur DY, Owens VN, Kumar S, Hong CO (2021) Mitigation of global warming potential and greenhouse gas intensity in arable soil with green manure as source of nitrogen. Environ Pollut 288:117724
Luyssaert S et al (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biol 13(12):2509–2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x
Ma YC, Kong XW, Yang B, Zhang XL, Yan XY, Yang JC, Xiong ZQ (2013) Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric Ecosyst Environ 164:209–219. https://doi.org/10.1016/j.agee.2012.11.003
Mancinelli R, Campiglia E, Tizio AD, Marinari S (2010) Soil carbon dioxide emission and carbon content as affected by conventional and organic cropping systems in Mediterranean environment. Appl Soil Ecol 46:64–72
Mishra U, Torn MS, Masanet E, Ogle SM (2012) Improving regional soil carbon inventories: combining the IPCC carbon inventory method with regression kriging. Geoderma 189–190:288–295
Mosier A, Halvorson A, Reule C, Liu X (2006) Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual 35:1584–1598
Muhammad I, Sainju UM, Zhao F, Khan A, Ghimire R, Fu X, Wang J (2019) Regulation of soil CO2 and N2O emissions by cover crops: a meta-analysis. Soil Tillage Res 192:103–112
Ogle SM, Breidt FJ, Paustian K (2005) Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 72:87–121
Ozlu E, Kumar S (2018) Response of surface GHG fluxes to long-term manure and inorganic fertilizer application in corn and soybean rotation. Sci Total Environ 626:817–825. https://doi.org/10.1016/j.scitotenv.2018.01.120
Qaswar M, Huang J, Ahmed W, Liu S, Li D, Zhang L, Liu L, Xu Y, Han T, Du J (2019) Substitution of inorganic nitrogen fertilizer with green manure (GM) increased yield stability by improving C input and nitrogen recovery efficiency in rice based cropping system. Agronomy 9(10):609
Schnitzer M (1982) Total carbon, organic matter, and carbon. In: Page AL et al. (ed) Methods of Soil Analysis. Part II, 2nd edn. Agronomics Monograph, Vol. 9. ASA and SSSA, Madison, WI, pp 539–577
Smith P, Lanigan G, Kutsch WL, Buchmann N, Eugster W, Aubinet M, Ceschia E, Beziat P, Yeluripati JB, Osborne B, Moors EJ, Brut A, Wattenbach M, Sauders M, Jones M (2010) Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric Ecosyst Environ 139(3):302–315. https://doi.org/10.1016/j.agee.2010.04.004
Somenahally A, DuPont J, Brady J, McLawrence J, Northup B, Gowda P (2018) Microbial communities in soil profile are more responsive to legacy effects of wheat-cover crop rotations than tillage systems. Soil Biol Biochem 123:126–135
Sperow M (2020) Updated potential soil carbon sequestration rates on U.S. agricultural land based on the 2019 IPCC guidelines. Soil Tillage Res 204:104719
Tao J, Liu X, Liang Y, Nuu J, Xiao Y, Gu Y, Ma L, Ma L, Meng D, Zhang Y, Huang W, Peng D, Yin H (2016) Maize growth responses to soil microbes and soil properties after fertilization with different green manures. Appl Microbiol Biotechnol 101:1289–1299
United Nations Framework Convention on Climate Change (2015) INDC submission. Retrieved from http://unfccc.int/focus/indc_portal/items/8766.php
VandenBygaart AJ, McConkey BG, Angers DA, Smith W, de Gooijer H, Bentham M, Martin T (2007) Soil carbon change factors for the Canadian agriculture national greenhouse gas inventory. Can J Soil Sci 88:671–680
Wang F, Cui H, He F, Liu Q, Zhu Q, Wang W, Liao H, Yao D, Cao W, Lu P (2022) The green manure (Astragalus sinicus L.) improved rice yield and quality and changed soil microbial communities of rice in the Karst mountains area. Agronomy 12:1851
Xie Z, Liu G, Bei Q, Tang HY, Liu J, Sun H, Xu Y, Zhu J, Cadisch G (2010) CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. Sci China Earth Sci 53(9):1351–1357. https://doi.org/10.1007/s11430-010-4014-z
Yao Z, Zhang D, Liu N, Yao P, Zhao N, Li Y, Zhang S, Zhai B, Huang D, Wang Z, Cao W, Adl S, Gao Y (2019) Dynamics and sequestration potential of soil organic carbon and total nitrogen stocks of leguminous green manure-based cropping systems on the Loess Plateau of China. Soil and Tillage Research 191:108–116
Zhang Y, Xu M, Chen H, Adams J (2009) Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Global Ecol Biogeogr 18(3):280–290. https://doi.org/10.1111/j.1466-8238.2008.00442.x
Zhou G, Cao W, Bai J, Xu C, Zeng N, Gao S, Rees RM, Dou F (2020) Co-incorporation of rice straw and leguminous green manure can increase soil available nitrogen (N) and reduce carbon and N losses: an incubation study. Pedosphere 30(5):661–670
