Neoproterozoic magmatic complexes of the Songino block (Mongolia): A problem of formation and correlation of Precambrian terranes in the Central-Asian Orogenic Belt

Petrology - Tập 25 - Trang 365-395 - 2017
V. V. Yarmolyuk, A. M. Kozlovsky, V. I. Lebedev1
1Tuvinian Institute for Exploration of Natural Resources, Siberian Branch, Russian Academy of Sciences, Republic of Tuva, Russia

Tóm tắt

An important role of the early Neoproterozoic juvenile crustal growth in the formation of the Khangai group of Precambrian terranes in the Central Asian Orogenic Belt was demonstrated by the example of the Holbo Nur Zone of the Songin Block. Magmatic complexes of this zone correspond to different settings of the Early Neoproterozoic ocean: oceanic islands, mid-ocean ridges, intraoceanic island arcs, and turbidite basins. Obtained data on volcanic rocks and associated granitoids constrain a timing of the island-arc magmatic complexes, at least within the interval of 888–859 Ma. The comparison of structures of the Songino and Tarbagatai blocks of the Khangai group of terranes showed that they share many common features in their geology and evolution and may be united into the single Songino–Tarbagatai terrane. This terrane was formed owing to the Early Neoproterozoic (~800 Ma) accretion of the ocean island, spreading, island-arc, and turbidite complexes of the oceanic plate to a stable continental massif represented by the Early Neoproterozoic Ider Complex of the Tarbagatai Block. The involvement of the Dzabkhan terrane into a Khangai collage of terranes is constrained between the formation of the volcanic rocks of the Dzabkhan Formation (~770–755 Ma), which are unknown in the Songino–Tarbagatai terrane, and the Tsagaan-Olom carbonate cover (~630 Ma), overlying both the Dzabkhan and Songino–Tarbagatai terranes. It was proposed that the formation of the Precambrian terranes of the Central Asian Orogenic Belt began from the Early Neoproterozoic accretion to the Rodinia supercontinent. The fragmentation of the latter above a mantle superplume at the end of the Early Neoproterozoic spanned also the newly formed fold area. This led to the formation of terranes, which included both fragments of the Paleoproterozoic craton and Early Neoproterozoic structures. Subsequent amalgamation of these Precambrian crustal fragments into composite terranes possibly occurred at the end of the early Baikalian tectonic phase.

Tài liệu tham khảo

Agafonov, L.V., Izokh, A.E., and Stupakov, S.I., Dunit-verlit- klinopiroksen-gabbrovaya formatsiya Mongolii (Dunite–Wehrlite–Clinopyroxenite–Gabbro Association of Mongolia), Novosibirsk: IGiG SO RAN AN SSSR, 1987. Andreev, A.A., Rytsk E.Yu., Velikoslavinskii S.D., et al., Geodynamic settings of the formation of amphibolites of the Kichera Zone of the Baikal–Muya Foldbelt: results of geochemical studies, Dokl. Earth Sci., 2015, vol. 460, 168–173. Anisimova, I.V., Kozakov, I.K., Yarmolyuk, V.V., et al., Age, sources, and geological position of anorthosites of Precambrian terranes of central Asia: example from the Khunzhilingol Massif, Mongolia, Dokl. Earth Sci., 2009, vol. 428, pp. 1120–1125. Badarch, G., Cunningham, W.D., and Windley, B.F., A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia, J. Asian Earth Sci., 2002, vol. 21, pp. 87–104. Bogdanova, S.V., Pisarevsky, S.A., and Li, Z.X., Assembly and breakup of Rodinia (some results of IGCP Project 440), Stratigraphy. Geol. Correlation, 2009, vol. 17, no. 3, pp. 259–274. Condie, K.C., Continental growth during formation of Rodinia at 1.35–0.9 Ga, Gondwana Res., 2001, vol. 4, pp. 5–16. Condie, K.C., High field element ratios in Archean basalts: a window to evolving sources of mantle plumes?, Lithos, 2005, vol. 79, pp. 491–504. Degtyarev, K.E., Ryazantsev, A.V., Tret’yakov, A.A., et al., Neoproterozoic–Early Paleozoic tectonic evolution of the western part of the Kyrgyz Ridge (Northern Tian Shan) Caledonides, Geotectonics, 2014, vol. 47, no. 6, pp. 377–417. Didenko, A.N., Mossakovskii, A.A., Pecherskii, D.M., et al., Geodynamics of the Paleozoic oceans of Central Asia, Geol. Geofiz., 1994, vol. 35, nos. 7–8, pp. 59–75. Dmitrieva, N.V., Letnikova, E.F., and Proshenkin, A.I., Neoproterozoic metaterrigenous rocks of the Northern Muya Block (Baikal–Muya Belt): new data on petrogeochemical composition, age, and conditions of formation, in Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu) (Geodynamic Evolution of Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent)), Irkutsk: Institut zemnoi kory SO RAN, 2012, vol. 1, pp. 80–82. Dobretsov, N.L., Buslov, M.M., and Vernikovsky, V.A., Neoproterozoic to Early Ordovician evolution of the Paleoasian ocean: implications to the break-up of Rodinia, Gondwana Res., 2003, vol. 6, no. 2, pp. 143–159. Fedotova, A.A., Razumovskiy, A.A., Khain, E.V., et al., Late Neoproterozoic igneous complexes of the Western Baikal–Muya Belt: formation stages, Geotectonics, 2014, no. 4, pp. 292–312. Geologicheskaya karta Mongol’skoi Narodnoi Respubliki. Masshtab (Geological Map of the Mongolian People’s Republic. Scale 1: 200000, L-47-I), Moscow: Ministerstvo geologii SSSR, Zarubezhgeologiya, 1982. Geologicheskie formatsii Mongolii (Geological Formations of Mongolia), Moscow: ShAG, 1995. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150. Karta geologicheskikh formatsii Mongol’skoi Narodnoi Respubliki. Masshtab 1: 1500000 (Map of the Geological Formations of the Mongolian People’s Republic. Scale 1: 1500000), Yanshin, A.L., Ed., Moscow: GUGK SSSR, 1989. Kearey, Ph., Klepeis, K.A., and Vine, F.J., Global Tectonics. 3rd Ed., Oxford: Wiley-Blackwell, 2009. Kelemen, P.B., Hanghoj, K., and Greene, A.R., One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust, in Treatise on Geochemistry, Holland, H.D. and Turekian, K.K., Eds., Oxford: Elsevier Ltd, 2003, vol. 3, pp. 594–649. Keto, L.S. and Jacobsen, S.B., Nd and Sr isotopic variations of Early Paleozoic oceans, Earth Planet. Sci. Lett., 1987, vol. 84, pp. 27–41. Khain, E.V., Bibikova, E.V., Kroner, A., et al., The most ancient ophiolite of the Central Asian Fold Belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications, Earth Planet. Sci. Lett., 2002, vol. 199, nos. 3–4, pp. 311–325. Khain, E.V., Bibikova, E.V., Salnikova, E.V., et al., The Paleoasian ocean in the Neoproterozoic and Early Paleozoic: new geochronological data and paleotectonic reconstruction, Precambrian Res., 2002, vol. 2296, pp. 1–30. Kheraskova, T.N., Bush, V.A., Didenko, A.N., and Samygin, S.G., Breakup of Rodinia and early stages of evolution of the Paleoasian Ocean, Geotectonics, 2010, no. 1, pp. 3–24. Kheraskova, T.N., Samygin, S.G., Ruzhentsev, S.V., and Mossakovskii, A.A., Late Riphean marginal-continental belt of East Gondwana, Dokl. Akad. Nauk, 1995, vol. 342, no. 5, pp. 661–664. Konnikov, E.G., Tsygankov, A.A., and Vrublevskaya, T.T., Baikalo-Muiskii vulkano-plutonicheskii poyas: strukturnoveshchestvennye kompleksy i geodinamika (Baikal–Muya Volcanoplutonic Belt: Lithotectonic Complexes and Geodynamics), Moscow: GEOS, 1999. Kovach, V.P., Kozakov, I.K., Sal’nikova, E.B., et al., Crustal growth stages in the Songino Block of the Early Caledonian superterrane in Central Asia: II. Geochemical and Nd-isotope data, Petrology, 2013, vol. 21, no. 5, pp. 409–426. Kovalenko, V.I., Yarmolyuk, V.V., Tomurtogo, O., et al., Geodynamics and crust-forming processes in the Early Caledonides of the Bayanhongor Zone, Central Mongolia, Geotectonics, 2005, vol. 39, no. 4, pp. 298–316. Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., et al., Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian Mobile Belt: geological and isotopic evidence, J. Asian Earth Sci., 2004, vol. 23, pp. 605–627. Kozakov, I.K., Kotov, A.B., Kovach, V.P., and Sal’nikova, E.B., Crustal growth in the geologic evolution of the Baidarik Block, Central Mongolia: evidence from Sm-Nd isotopic systematics, Petrology, 1997, vol. 5, no. 3, pp. 201–207. Kozakov, I.K., Kovach, V.P., Bibikova, E.V., et al., Late Riphean episode in the formation of crystalline rock complexes in the Dzabkhan Microcontinent: geological, geochronologic, and Nd isotopic-geochemical data, Petrology, 2014, vol. 22, no. 5, pp. 480–506. Kozakov, I.K., Kovach, V.P., Yarmolyuk, V.V., et al., Crust-forming processes in the geologic development of the Tuva–Mongolia Massif: Sm-Nd isotopic and geochemical data for granitoids, Petrology, 2003, vol. 11, no. 5, pp. 424–463. Kozakov, I.K., Kozlovsky, A.M., Yarmolyuk, V.V., et al., Crystalline complexes of the Tarbagatai Block of the Early Caledonian superterrane of Central Asia, Petrology, 2011, vol 19, no. 4, pp. 426–443. Kozakov, I.K., Salnikova, E.B., Yarmolyuk, V.V., et al., Crustal growth stages in the Songino Block of the Early Caledonian Superterrane in Central Asia: I. Geological and geochronological data, Petrology, 2013a, vol. 21, no. 3, pp. 203–220. Kozakov, I.K., Salnikova, E.B., Kovach, V.P., et al., Late Riphean age of conglomerates from the Kholbonur Complex of Songino Block, Central Asian Caledonides, Stratigraphy. Geol. Correlation, 2013b, vol. 21, no. 5, pp. 482–495. Kozakov I.K., Yarmolyuk V.V., Kovach V.P., et al., The Early Baikalian crystalline complex in the basement of the Dzabkhan Microcontinent of the Early Caledonian Orogenic Area, Central Asia, Stratigraphy. Geol. Correlation, 2012, vol. 20, no. 3, pp. 231–239. Kröner, A., Kovach, V.P., Kozakov, I.K., et al., Zircon ages and Nd-Hf isotopes in UHT granulites of the Ider Complex: a cratonic terrane within the Central Asian Orogenic Belt in NW Mongolia, Gondwana Res., 2015, vol. 27, pp. 1392–1406. Kuzmichev, A.B., Tektonicheskaya istoriya Tuvino-Mongol’skogo massiva: rannebaikal’skii, pozdnebaikal’skii i rannekaledonskii etapy (Tectonic History of the Tuva–Mongolian Massif; Early Baikalian and Early Caledonian Stages), Moscow: PROBEL-2000, 2004. Kuzmichev, A.B. and Larionov, A.N., Neoproterozoic island arcs in East Sayan: duration of magmatism (from U-Pb zircon dating of volcanic clastics), Russ. Geol. Geophys., 2013, vol. 54, no. 1, pp. 45–57. Kuzmichev, A.B. and Larionov, A.N., The Sarkhoi Group in East Sayan: Neoproterozoic (~770–800 Ma) volcanic belt of the Andean type, Russ. Geol. Geophys., 2011, vol. 52, no. 7, pp. 685–700. Letnikova, E.F., Vishnevskaya, I.A., Veshcheva, S.V., et al., Isotope-geochemical characteristics of sedimentary rocks of microcontinents of the Paleoasian ocean: first summary, in Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu). Materialy nauchn. soveshch (Geodynamic Evolution of Lithosphere of the Central Asian Mobile Belt (from Ocean to Continent). Proceedings of Conference), Irkutsk: In-t zemnoi kory SO RAN, 2011, no. 9, pp. 131–133. Levashova, N.M., Kalugin, V.M., Gibsher, A.S., et al., The origin of the Baidaric microcontinent, Mongolia: constraints from paleomagnetism and geochronology, Tectonophysics, 2010, vol. 485, pp. 306–320. Li, Z.X., Li, X.H., Kinny, P.D., et al., Geochronology of Neoproterozoic synrift magmatism in the Yangtze Craton, South China, and correlations with other continents evidence for a mantle superplume that broke up Rodinia, Precambrian Res., 2003, vol. 122, pp. 85–109. Li, Z.X., Bogdanova, S.V., Collins, F.S., et al., Assembly, configuration, and break-up history of Rodinia: a synthesis, Precambrian Res, 2008b, vol. 160, nos. 1–2, pp. 179–210. Mossakovskii, A.A., Ruzhentsev, S.V., Samygin, S.G., and Kheraskova, T.N., Central Asian Fold Belt: geodynamic evolution and history of formation, Geotectonics, 1993, no. 6, pp. 3–33. Nozhkin, A.D., Turkina, O.M., Bayanova, T.B., et al., Neoproterozoic rift and within-plate magmatism in the Yenisei Ridge: implications for the breakup of Rodinia, Russ. Geol. Geophys., 2008, vol. 49, no. 7, pp. 503–519. Ovchinnikova, G.V., Kuznetsov, A.B., Vasil’eva, I.M., et al., U–Pb age and Sr isotope signature of cap limestones from the Neoproterozoic Tsagaan Oloom Formation, Dzabkhan River basin, Western Mongolia, Stratigraphy. Geol. Correlation, 2012, vol. 20, no. 6, pp. 516–527. Pearce, J.A., The role of subcontinental lithosphere in magma genesis at destructive plate margins, Continental Basalt and Mantle Xenoliths, Hawkesworth, C.J. and Norry, H.J., Eds., Nantwich, Cheshire: Shiva Publications, 1983, pp. 230–249. Pearce, J., Harris, N.B.W., and Tindle, A.G., Trace element distribution diagrams for the tectonic interpretation of granitic rock, J. Petrol., 1984, vol. 25, pp. 956–983. Rytsk, E.Yu., Kovach, V.P., Kovalenko, V.I., and Yarmolyuk, V.V., Structure and evolution of the continental crust in the Baikal fold region, Geotectonics, 2007, vol. 41, no. 6, pp. 440–464. Rytsk E.Yu., Kovach V.P., Yarmolyuk, V.V., et al., Isotopic structure and evolution of the continental crust in the East Transbaikalian segment of the Central Asian Foldbelt, Geotectonics, 2011, vol. 45, no. 5, pp. 349–377. Schandl, E.S. and Gorton, M.P., Application of high field strength elements to discriminate tectonic settings in VMS environments, Econ. Geol., 2002, vol. 97, pp. 629–642. Sklyarov, E.V., Gladkochub, D.P., Mazukabzov, A.M., et al., Dike swarms on the southern flank of the Siberian Craton as indicators of the Rodinia Supercontinent breakup, Geotectonics, 2000, vol. 34, no. 6, pp. 482–496. Sun, S.-s. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Magmatism in the Ocean Basins, Saunders, A.D. and Norry, M.J., Geol. Soc. Sp. Publ., 1989, vol. 42, pp. 313–345. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Evolution and Composition, London: Blackwell, 1985. Vishnevskaya, I.A., Letnikova, E.F., Pisareva, N.I., et al., Chemostratigraphy of Late Cambrian carbonate deposits of microcontinents of the Paleoasian ocean, in Osadochnye basseiny, sedimentatsionnye i postsedimentatsionnye protsessy v geologicheskoi istorii. Materialy VII Vserossiiskogo litologicheskogo soveshchaniya (Sedimentary Basins, Sedimentation, and Post-Sedimentation Processes in Geological History. Proceedings of 7th All-Russian Lithological Conference), Novosibirsk: INGG SO RAN, 2013, vol. 1, pp. 170–173. Wang, J. and Li, Z.X., History of Neoproterozoic rift basins in South China: implications for Rodinia break-up, Precambrian Res., 2003, vol. 122, pp. 141–158. Wilhem, C., Windley, B.F., and Stampfli, G.M., The Altaids of Central Asia: a tectonic and evolutionary innovative review, Earth Sci. Rev., 2012, vol. 113, pp. 303–341. Yarmolyuk V.V., Kovalenko V.I., Anisimova I.V. et al., Late Riphean alkali granites of the Zabhan Microcontinent: evidence for the timing of Rodinia breakup and formation of microcontinents in the Central Asian Fold Belt, Dokl. Earth Sci., 2008, vol. 420, no. 4, pp. 583–588. Yarmolyuk, V.V., Kovalenko, V.I., Kovach, V.P., et al., Early stages of the Paleoasian Ocean formation: results of geochronological, isotopic, and geochemical investigations of Late Riphean and Vendian–Cambrian complexes in the Central Asian Foldbelt, Dokl. Earth Sci., 2006, vol. 410, no. 5. S. 657–662. Yarmolyuk, V.V., Kovalenko, V.I., Salnikova, E.B., et al., Late Riphean rifting and breakup of Laurasia: data on geochronological studies of ultramafic alkaline complexes in the southern framing of the Siberian Craton, Dokl. Earth Sci., 2005, vol. 404, no. 7, pp.1031–1036. Yarmolyuk, V.V., Kozlovsky, A.M., Salnikova, E.B., et al., Structure, age, and geodynamic settings of Early Neoproterozoic magmatic complexes of the Central Asian Fold Belt exemplified by the Holbo Nur Zone of Songin Terrane, Dokl. Earth Sci., 2015, vol. 465, no. 1, pp. 1112–1116. Zaitsev, N.S., Tectonics of Mongolia, Evolyutsiya geologicheskikh protsessov i metallogeniya Mongolii (Evolution of Geological Processes and Metallogeny of Mongolia), Moscow: Nauka, 1990, pp. 15–22.