Neoproterozoic cap carbonates: a critical appraisal of existing models and the plumeworld hypothesis

Terra Nova - Tập 17 Số 4 - Trang 299-310 - 2005
Graham Shields1
1School of Earth Sciences; James Cook University; Townsville, Queensland Australia

Tóm tắt

AbstractEvidence for glaciation during the mid‐late Neoproterozoic is widespread on Earth, reflecting three or more ice ages between 730 Ma and 580 Ma. Of these, the late Neoproterozoic Marinoan glaciation of approximately 635 Ma stands out because of its ubiquitous association with a characteristic, microcrystalline cap dolostone that drapes glacially influenced rock units worldwide. The Marinoan glaciation is also peculiar in that evidence for low altitude glaciation at equatorial latitudes is compelling. Three models have been proposed linking abrupt deglaciation with this global carbonate precipitation event: (i) overturn of an anoxic deep ocean; (ii) catastrophically accelerated rates of chemical weathering because of supergreenhouse conditions following global glaciation (Snowball Earth Hypothesis); and (iii) massive release of carbonate alkalinity from destabilized methane clathrates. All three models invoke extreme alkalinity fluxes into seawater during deglaciation but none explains how such alkalinity excess from point sources could be distributed homogeneously around the globe. In addition, none explains the consistent sequence of precipitation events observed within cap carbonate successions, specifically: (i) the global blanketing of carbonate powder in shallow marine environments during deglaciation; (ii) widespread and disruptive precipitation of dolomite cement; followed by (iii) localized barite precipitation and seafloor cementation by aragonite. The conceptual model presented here proposes that low latitude deglaciation was so massive and abrupt that the resultant meltwater plume could extend worldwide, physically separating the surface and deep ocean reservoirs for ≥103 years. It is proposed that cap dolostones formed primarily by microbially mediated precipitation of carbonate whitings during algal blooms within this low salinity plumeworld rather than by abiotic precipitation from normal salinity seawater. Many of the disruption features that are characteristic of cap dolostones can be explained by microbially mediated, early diagenetic dolomitization and cementation. The re‐initiation of whole ocean circulation degassed CO2 into the atmosphere in areas of upwelling, triggering localized, abiotic CaCO3 precipitation in the form of aragonite fans that overlie cap dolostones in NW Canada and Namibia. The highly oxygenated shallow marine environments of the glacial and post‐glacial Neoproterozoic world provided consistently favourable conditions for the evolutionary development of animals and other oxygenophiles.

Từ khóa


Tài liệu tham khảo

10.1038/nature03176

10.1126/science.1057204

10.1073/pnas.0400323101

Bertrand‐Sarfati J., 1997, Lower Cambrian apatitic stromatolites and phospharenites related to the glacio‐eustatic cratonic rebound (Sahara, Algeria), J. Sed. Res., 67, 957

10.1016/S0301-9268(99)00078-9

10.1038/24839

10.1126/science.1062517

10.1126/science.1107765

10.1029/2000GL011836

10.1016/0899-5362(91)90105-8

Deynoux M., 1980, Les formations glaciaires du Precambrian terminal et de la fin de l'Ordovicien en Afrique de l'ouest, Travaux des laboratoires des sciences de la terre, 554

10.1016/0031-0182(82)90072-4

10.1080/01490450490253455

10.2475/ajs.300.5.347

Ghienne J.‐F., 2000, Caractérisation des horizons manganésiferes de l'Ordovicien supérieur de Sardaigne: relation avec la glaciation fini‐Ordovicienne, C.R. Acad. Sci. Paris, Sci. Terres planèt., 331, 257

Glasby G.P., 1997, Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits, 213

10.2307/3515096

10.1029/2002GC000403

10.1016/S0899-5362(99)00018-4

Hoffman P.F., 2002, International Assoc. Sedimentologists Field Excursion Guidebook, 1

10.1046/j.1365-3121.2002.00408.x

10.1126/science.281.5381.1342

10.1016/S0012-821X(02)00804-X

10.1130/G20923.1

10.1130/0-8137-2379-5.177

James N.P., 2005, Geology, 9

10.1139/e01-046

10.1038/nature02201

Kah L.C., 2000, Deposition and Diagenesis in an Evolving Precambrian World, 245

10.1111/j.1365-3091.1987.tb00590.x

10.2110/jsr.66.1050

10.1130/0091-7613(1998)026<1059:TOFNG>2.3.CO;2

10.1130/0091-7613(2001)029<0443:APCCAI>2.0.CO;2

Kirschvink J.L., 1992, The Proterozoic Biosphere, 51

10.2113/gsecongeo.88.3.542

Klein C., 2005, Geochemistry and mineralogy of Neoproterozoic banded iron‐formations and some selected, siliceous manganese formations from the Urucum district, Mato Grosso do Sul, Brazil, Econ. Geol., 99, 1233, 10.2113/gsecongeo.99.6.1233

Knoll A.H., 2003, Life on a Young Planet: The First Three Billion Years of Evolution on Earth, 277

10.1038/321832a0

10.1126/science.273.5274.452

10.1126/science.1098803

10.1046/j.1472-4669.2003.00003.x

10.1038/nature02494

10.1130/0091-7613(1997)025<0085:IOTAMC>2.3.CO;2

10.1130/0091-7613(2003)031<0613:SDATBO>2.0.CO;2

10.1130/0091-7613(1999)027<0339:TDTCCT>2.3.CO;2

10.1017/CBO9780511628900.011

10.1126/science.1088342

10.1130/G20246.2

10.1038/35013168

Schrock R.R., 1948, Sequence in Layered Rocks

10.1029/2001GC000266

10.1016/S0012-821X(02)00461-2

10.1016/j.chemgeo.2003.12.001

10.1130/0016-7606(1999)111<1120:PPRIMC>2.3.CO;2

10.4319/lo.1997.42.1.0133

10.1016/S0012-821X(02)00800-2

10.1130/G19652.1

10.1046/j.1365-3121.2003.00510.x

10.1130/G20992.1

10.1016/0037-0738(88)90066-8

10.1029/2000PA000522