Nematic and cholesteric thermotropic polyesters with azoxybenzene mesogenic units and flexible spacers in the main chain

Wiley - Tập 20 Số 5 - Trang 877-892 - 1982
A. Blumstein1, S. Vilasagar1, S. Ponrathnam1, S. B. Clough1, R. B. Blumstein1, G. Maret2
1Department of Chemistry, Polymer Science Program, University of Lowell, Lowell, Massachusetts 01854
2Hochfeld Magnet Labor, Max Planck Institut fuer Festkörperforschung, F‐38042, Grenoble Cedex, France

Tóm tắt

Abstract

Properties of linear polyesters based on azoxybenzene and 2,2′‐methylazoxybenzene moieties with linear, flexible spacers based on mixtures of dodecanedioic acid (DDA) and methyladipic acid (MAA), chiral or racemic, of various compositions (system MAA/DDA‐8 and MAA/DDA‐9, respectively) have been described. Substitution of methyl groups in the 2,2′ or 3,3′ positions of the mesogenic core leads to soluble and relatively low‐melting‐point polyesters. The viscosity law for (MAA/DDA‐9) polyesters in 1,1,2,2 tetrachloroethane gives an exponent 0.76, indicating well‐sol‐vated, coiled chain conformations in dilute solution. Calorimetric data show an increase in isotropization entropy ΔSNI with increasing average length of the spacer. This suggests a nonrandom conformation of the spacer in the nematic melt with a degree of order superior to that of low‐molecular‐weight analogs. X‐ray data obtained with an oriented nematic glass quenched from the nematic melt of DDA‐9 subjected to a magnetic field of 10–12 T also support the extended‐chain model in the nematic phase of DDA‐9. Oriented fibers can be produced by subjecting nematic melts of polyesters 8 and 9 either to magnetic fields of high intensity or to shear fields. The x‐ray data obtained from these fibers also support the extended‐chain model. Cholesteric systems do not orient in the magnetic field of 10–12 T. The study of mesophases of systems 8 and 9 indicates a dramatic influence of the position of the ester group on the stability of the mesophase in the azoxybenzene polyesters. The results are interpreted in terms of geometric factors influencing the colinearity of the mesogenic core and of the extended spacer.

Từ khóa


Tài liệu tham khảo

Blumstein A., 1978, Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem., 19, 2

10.1080/00268944908070421

10.1016/0032-3861(82)90013-1

10.1080/01406568008070502

10.1080/01406568108084029

10.1016/0014-3057(79)90250-7

10.1002/macp.1980.021810902

10.1002/pi.4980120403

10.1080/00268947908070467

10.1016/0014-3057(80)90071-3

10.1016/0014-3057(81)90213-5

B.Fayolle C.Noel andJ.Billard J. Phys. Paris Coll.3 Suppl. 40 485(1979).

10.1021/jo50008a001

Raphael R. A., 1952, J. Chem. Soc. Perkins Trans. 2, 2, 1958

Organic Synthesis Vol. II p.16(collective).

10.1021/ma50006a077

Arnold M., 1964, Z. Phys. Chem. (Leipzig), 226, 146, 10.1515/zpch-1964-22615

Volino F., 1981, C. R. Acad. Sci., 292, II

10.1051/jphyslet:019810042013030500

10.1002/anie.197809351

Maret G., 1981, Polym. Prepr. Am. Chem. Soc. Div. Polym. Sci., 22, 1

10.1080/15421406908084877

10.1080/15421407008083495

Maret G., 1981, Proceedings of the IUPAC Macromolecular Symposium, Strasbourg, 11, 829

Maret G., Mol. Cryst. Liq. Cryst.

10.1021/j100636a025

Martins A. F., 1980, Prot. Phys., 11, 159

10.1021/ma60075a004