Nehari manifold and fibering map approach for fractional p(.)-Laplacian Schrödinger system

Hamza El-Houari1, Lalla Saadia Chadli1, Moussa Hicham1
1Faculty of Sciences and Techniques Béni Mellal, Research Laboratory “Applied Mathematics and Scientific Computing”, University Sultan Moulay Slimane, Béni Mellal, Morocco

Tóm tắt

In this paper we extended the results of Biswas & Tiwari named Nehari manifold approach for fractional $$p(\cdot )$$ -Laplacian system involving concave-convex nonlinearities (2020). We study the existence and multiplicity of solutions to the fractional Schrödinger problem system with Dirichlet boundary condition by using the Nehari manifold approach. The nonlinearities is not satisfied Ambrosetti–Rabinowitz condition, monotonocity or convexity conditions, and can be discontinuous in nature.

Tài liệu tham khảo

Azroul, E., Benkirane, A., Boumazourh, A., Shimi, M.: Existence results for fractional p (x,)-Laplacian problem via the Nehari manifold approach. Appl. Math. Optim. 84, 1527–1547 (2021) Bahrouni, A., Radulescu, V.D.: On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete Contin. Dyn. Syst. Ser. 11(3), 379 (2018) Biswas, R., Tiwari, S.: Nehari manifold approach for fractional p(.)-Laplacian system involving concave-convex nonlinearitties. Electron. J. Differ. Equ. 2020(98), 1–29 (2020) Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983) Brown, K.J., Zhang, Y.: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Differ. Equ. 193(2), 481–499 (2003) Bozhkov, Y., Mitidieri, E.: Existence of multiple solutions for quasilinear systems via fibering method. J. Differ. Equ. 190(1), 239–267 (2003) Carbotti, A., Dipierro, S., Valdinoci, E.: Local Density of Solutions to Fractional Equations, 74. Walter de Gruyter GmbH & Co KG, Berlin (2019) Cekic, B., Mashiyev, R.A.: Existence and localization results for-Laplacian via topological methods. Fixed Point Theory Appl. 2010, 1–7 (2010) Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011) Dräbek, P., Pohozaev, S.I.: Positive solutions for the p-Laplacian: application of the fibrering method. Proc. R. Soc. Edinb. Sect. A Math. 127(4), 703–726 (1997) Fan, X., Zhao, D.: On the spaces \(L^{p(x)}(Q)\) and \(W^{m, p(x)}(Q)\). J. Math. Anal. Appl. 263(2), 424–446 (2001) Fan, X.: On the sub-supersolution method for p(x)-Laplacian equations. J. Math. Anal. Appl. 330(1), 665–682 (2007) El-Houari, H., Chadli, L.S., Moussa, H.: On a class of fractional p(.,)-Kirchhoff–Schrödinger system type. Eur. J. Math. Appl. (2023). https://doi.org/10.28919/ejma.2022.3.9 Ilias, P.: Dirichlet problem with \(p(x)\)-Laplacian. AMS Math. Rep. 10(60), 1 (2008) Kaufmann, U., Rossi, J.D., Vidal, R.E.: Fractional Sobolev spaces with variable exponents and fractional \(p(x)\)-Laplacians. Electron. J. Qual. Theory Differ. Equ. 76, 1–10 (2017) Marcellini, P.: Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ. 90(1), 1–30 (1991) Pohozaev, S.I.: Nonlinear variational problems via the fibering method. Handb. Differ. Equ. Station. Partial Differ. Equ. 5, 49–209 (2008)