Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Thương lượng trong môi trường dựa trên khám phá
Tóm tắt
Khi hai bên cần chia sẻ một phần thưởng giữa họ, lý thuyết thương lượng có thể dự đoán những đề nghị mà các bên sẽ đưa ra và cách thức phần thưởng sẽ được chia sẻ. Khi một bên đơn lẻ cần đánh giá nhiều lựa chọn và chọn lựa chọn tốt nhất trong số đó, lý thuyết quy tắc dừng tối ưu hướng dẫn họ cách thực hiện việc khám phá, nên khám phá điều gì tiếp theo và khi nào dừng lại. Chúng tôi xem xét một mô hình trong đó bên A cần chọn một lựa chọn, nhưng không có thông tin và không có phương tiện để thu thập thông tin về giá trị của từng lựa chọn. Bên B, mặt khác, không quan tâm đến lựa chọn của bên A, nhưng có thể thực hiện việc khám phá (có chi phí) để tìm hiểu về các lựa chọn khác nhau. Do cả thương lượng và khám phá đều mất thời gian, thời hạn chung và yếu tố chiết khấu lại càng liên kết chặt chẽ các quá trình này với nhau. Chúng tôi nghiên cứu mô hình kết hợp, cung cấp một phân tích căn cứ vào lý thuyết trò chơi toàn diện, cho phép rút ra các khoản thanh toán cần thiết giữa các tác nhân A và B, cũng như phúc lợi xã hội. Đặc biệt nhấn mạnh việc nghiên cứu tác động của việc xen kẽ thương lượng và khám phá, và khi nào phương pháp này được ưu tiên hơn so với việc tách riêng hai quá trình. Ngoài việc khám phá các câu hỏi cơ bản, chúng tôi cũng xem xét trường hợp một trong các bên có quyền kiểm soát một số tham số của vấn đề (ví dụ: giao thức thương lượng), và chỉ ra cách mà điều này làm tăng lợi ích của bên này nhưng giảm phúc lợi chung.
Từ khóa
#Thương lượng #Khám phá #Lý thuyết trò chơi #Quy tắc dừng tối ưu #Phúc lợi xã hộiTài liệu tham khảo
Amgoud, L., Dimopoulos, Y., & Moraitis, P. (2007). A unified and general framework for argumentation-based negotiation. In: Proceedings of the 6th international joint conference on autonomous agents and multiagent systems (AAMAS-07), (pp. 158:1–158:8).
Amgoud, L., & Vesic, S. (2012). A formal analysis of the role of argumentation in negotiation dialogues. Journal of Logic and Computation, 22(5), 957–978.
An, B., Gatti, N., & Lesser, V. (2013). Bilateral bargaining with one-sided uncertain reserve prices. Autonomous Agents and Multi-Agent Systems, 26(3), 420–455.
Atakan, A. (2006). Assortative matching with explicit search costs. Econometrica, 74(3), 667–680.
Atlas, J., & Decker, K. (2010). Coordination for uncertain outcomes using distributed neighbor exchange. In Proceedings of the ninth international conference on autonomous agents and multiagent systems (AAMAS-10), (pp. 1047–1054).
Azaria, A., Aumann, Y., & Kraus, S. (2012). Automated strategies for determining rewards for human work. In Twenty-Sixth AAAI Conference on Artificial Intelligence.
Azaria, A., Aumann, Y., & Kraus, S. (2014). Automated agents for reward determination for human work in crowdsourcing applications. Autonomous Agents and Multi-Agent Systems, 28(6), 934–955.
Baarslag, T., Fujita, K., Gerding, E. H., Hindriks, K. V., Ito, T., Jennings, N. R., et al. (2013). Evaluating practical negotiating agents: Results and analysis of the 2011 international competition. Artificial Intelligence, 198, 73–103.
Baarslag, T., Hindriks, K., Jonker, C. M., Kraus, S., & Lin, R. (2012). The first automated negotiating agents competition (anac 2010). In T. Ito, M. Zhang, V. Robu, S. Fatima, & T. Matsuo (Eds.), New Trends in Agent-based Complex Automated Negotiations, volume 383 of Studies in Computational Intelligence (pp. 113–135). Berlin: Springer.
Bac, M., & Raff, H. (1996). Issue-by-issue negotiations: The role of information and time preference. Games and Economic Behavior, 13(1), 125–134.
Barbulescu, L., Rubinstein, Z., Smith, S., & Zimmerman, T. (2010). Distributed coordination of mobile agent teams: the advantage of planning ahead. In: Proceedings of the ninth international conference on autonomous agents and multiagent systems (AAMAS-10) (pp. 1331–1338).
Benhabib, J., & Bull, C. (1983). Job search: The choice of intensity. Journal of Political Economy, 91(5), 747–764.
Buttner, R. (2006). A classification structure for automated negotiations. In: Proceedings of the IEEE/WIC/ACM international conference on Web Intelligence and Intelligent Agent Technology, WI-IATW ’06 (pp. 523–530).
Chevaleyre, Y., Endriss, U., & Maudet, N. (2010). Simple negotiation schemes for agents with simple preferences: Sufficiency, necessity and maximality. Autonomous Agents and Multi-Agent Systems, 20(2), 234–259.
Chhabra, M., Das, S., & Sarne, D. (2014). Expert-mediated sequential search. European Journal of Operational Research, 234(3), 861–873.
Dunne, P., Wooldridge, M., & Laurence, M. (2005). The complexity of contract negotiation. Artificial Intelligence, 164(1–2), 23–46.
Ephrati, E., & Rosenschein, J. (1995). A framework for the interleaving of execution and planning for dynamic tasks by multiple agents. From Reaction to Cognition (pp. 139–153). Berlin: Springer.
Faratin, P., Sierra, C., & Jennings, N. (2002). Using similarity criteria to make issue trade-offs in automated negotiations. Artificial Intelligence, 142, 205–237.
Fatima, S., Wooldridge, M., & Jennings, N. (2004). An agenda-based framework for multi-issue negotiation. Artificial Intelligence, 152(1), 1–45.
Fatima, S., Wooldridge, M., & Jennings, N. (2006). Multi-issue negotiation with deadlines. Journal of Artificial Intelligence Research, 27(1), 381–417.
Ferguson, T. S. (1989). Who solved the secretary problem? Statistical Science, 4(3), 282–289.
Fershtman, C. (1990). The importance of the agenda in bargaining. Games and Economic Behavior, 2(3), 224–238.
Gal, S., Landsberger, M., & Levykson, B. (1981). A compound strategy for search in the labor market. International Economic Review, 22(3), 597–608.
Gatti, N. (2009). Extending the alternating-offers protocol in the presence of competition: models and theoretical analysis. Annals of Mathematics and Artificial Intelligence, 55, 189–236.
Grosz, B., & Kraus, S. (1996). Collaborative plans for complex group action. Artificial Intelligence, 86(2), 269–357.
Hadad, M., Kraus, S., & Hartman, I. B.-A. (2013). Cooperative planning with time constraints. Annals of Mathematics and Artificial Intelligence, forthcoming.
Haim, G., Gal, Y., Gelfand, M., & Kraus, S. (2012). A cultural sensitive agent for human-computer negotiation. In: Proceedings of the 11th international conference on autonomous agents and multiagent systems, AAMAS-12 (pp. 451–458).
Harsanyi, J., & Selten, R. (1972). A generalized nash solution for two-person bargaining games with incomplete information. Management Science, 18(5), 80–106.
Hazon, N., Aumann, Y., Kraus, S., & Sarne, D. (2013). Physical search problems with probabilistic knowledge. Artificial Intelligence, 196, 26–52.
Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C., & Wooldridge, M. (2001). Automated negotiation: Prospects, methods and challenges. International Journal of Group Decision and Negotiation, 10(2), 199–215.
Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldridge, M., & Sierra, C. (2001). Automated negotiation: Prospects, methods and challenges. Group Decision and Negotiation, 10(2), 199–215.
Kephart, J., & Greenwald, A. (2002). Shopbot economics. Journal of Autonomous Agents and Multi-Agent Systems, 5(3), 255–287.
Kim, J., & Segev, A. (2003). A framework for dynamic ebusiness negotiation processes. In E-Commerce, 2003. CEC 2003. IEEE International Conference on, (pp. 84–91). IEEE.
Krasteva, S., & Yildirim, H. (2012). On the role of confidentiality and deadlines in bilateral negotiations. Games and Economic Behavior, 75(2), 714–730.
Kraus, S. (1997). Negotiation and cooperation in multi-agent environments. Artificial Intelligence, 94, 79–97.
Kraus, S. (2001). Strategic Negotiation in Multiagent Environments. Cambridge, USA: MIT Press.
Kraus, S., & Lehmann, D. (1995). Designing and building a negotiating automated agent. Computational Intelligence, 11(1), 132–171.
Kraus, S., & Wilkenfeld, J. (1991). The function of time in cooperative negotiations. In: Proceedings of the ninth national conference on artificial intelligence, AAAI’91 (pp. 179–184).
Kraus, S., & Wilkenfeld, J. (1991). Negotiations over time in a multi agent environment: Preliminary report. In: Proceedings of the twelfth international joint conference on artificial intelligence (IJCAI-91), (pp. 56–61).
Kraus, S., Wilkenfeld, J., & Zlotkin, G. (1995). Multiagent negotiation under time constraints. Artificial Intelligence, 75(2), 297–345.
Larson, K., & Sandholm, T. (2001). Bargaining with limited computation: Deliberation equilibrium. Artificial Intelligence, 132(2), 183–217.
Larson, K., & Sandholm, T. (2002). An alternating offers bargaining model for computationally limited agents. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems: Part 1, AAMAS ’02 (pp. 135–142), New York.
Larson, K., & Sandholm, T. (2002). An alternating offers bargaining model for computationally limited agents. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems (AAMAS-02) (pp. 135–142).
Lin, R., & Chou, S. (2004). Mediating a bilateral multi-issue negotiation. Electronic Commerce Research and Applications, 3(2), 126–138.
Lin, R., Gal, Y., Kraus, S., & Mazliah, Y. (2014). Training with automated agents improves people’s behavior in negotiation and coordination tasks. Decision Support Systems, 60, 1–9.
Lin, R., & Kraus, S. (2010). Can automated agents proficiently negotiate with humans? Communications of the ACM, 53(1), 78–88.
Lin, R., Kraus, S., Wilkenfeld, J., & Barry, J. (2006). An automated agent for bilateral negotiation with bounssded rational agents with incomplete information. Frontiers in Artificial Intelligence and Applications, 141, 270–274.
Lippman, S., & McCall, J. (1976). The economics of job search: A survey. Economic Inquiry, 14(3), 155–189.
Lomuscio, A., Wooldridge, M., & Jennings, N. (2001). A classification scheme for negotiation in electronic commerce. In: Proceedings of agent mediated electronic commerce (pp. 19–33).
Ma, A., & Manove, M. (1993). Bargaining with deadlines and imperfect player control. Econometrica, 61(6), 1313–39.
McMillan, J., & Rothschild, M. (1994). Search. In: Handbook of Game Theory with Economic Applications (pp. 905–927).
Miller, D., & Gat, E. (1991). proceedings of exploiting known topologies to navigate with low-computation sensing. In: Fibers’ 91, (pp. 425–435). International Society for Optics and Photonics.
Morgan, P. (1983). Search and optimal sample sizes. The Review of Economic Studies, 50(4), 659.
Morgan, P., & Manning, R. (1985). Optimal search. Econometrica, 53(4), 923–944.
Musliner, D., Durfee, E., & Shin, K. (1995). World modeling for the dynamic construction of real-time control plans. Artificial Intelligence, 74(1), 83–127.
Myerson, R. (1984). Two-person bargaining problems with incomplete information. Econometrica, 52(2), 461–487.
Nahum, Y., Sarne, D., Das, S., & Shehory, O. (2015). Two-sided search with experts. Autonomous Agents and Multi-Agent Systems, 29(3), 364–401.
Nash, J. (1950). The bargaining problem. Econometrica, 18, 155–162.
Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory (Vol. 1). Cambridge, NY: Cambridge University Press.
Osborne, M. J., & Rubinstein, A. (1994). A course in game theory. Cambridge, Mass: MIT press.
Paolucci, M., Shehory, O., & Sycara, K. (2000). Interleaving planning and execution in a multiagent team planning environment. Electronic Transaction Artificial Intelligence, 4, 23–43.
Raïffa, H. (1982). The art and science of negotiation. Cambridge, Mass: Belknap Press of Harvard University Press.
Rochlin, I., Aumann, Y., Sarne, D., & Golosman, L. (2014). Efficiency and fairness in team search with self-interested agents. In: International conference on Autonomous Agents and Multi-Agent Systems, AAMAS’14 (pp. 365–372).
Rochlin, I., Sarne, D., & Mash, M. (2014). Joint search with self-interested agents and the failure of cooperation enhancers. Artificial Intelligence, 214, 45–65.
Rosenfeld, A., Zuckerman, I., Segal-Halevi, E., Drein, O., & Kraus, S. (2015). NegoChat-A: a chat-based negotiation agent with bounded rationality. Autonomous Agents and Multi-Agent Systems. doi:10.1007/s10458-015-9281-9.
Rosenschein, J., & Zlotkin, G. (1994). Rules of encounter: Designing conventions for automated negotiation among computers. Cambridge, Mass: MIT Press.
Rothschild, M. (1974). Searching for the lowest price when the distribution of prices is unknown. Journal of Political Economy, 82(4), 689–711.
Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica, 50(1), 97–109.
Rubinstein, A. (1985). A bargaining model with incomplete information about time preferences. Econometrica, 53(5), 1151–72.
Sandholm, T., & Vulkan, N. (1999). Bargaining with deadlines. In: Proceedings of the national conference on artificial intelligence (AAAI-99) (pp. 44–51).
Sarne, D., & Kraus, S. (2008). Managing parallel inquiries in agents two-sided search. Artificial Intelligence, 172(4–5), 541–569.
Sarne, D., Manisterski, E., & Kraus, S. (2010). Multi-goal economic search using dynamic search structures. Autonomous Agents and Multi-Agent Systems, 21(2), 204–236.
Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory, 4, 25–55.
Sierra, C., Faratin, P., & Jennings, N. (1997). A service-oriented negotiation model between autonomous agents. In Proceedings of the 8th European workshop on modelling autonomous agents in a multi-agent world (MAAMAW) (pp. 17–35).
Sierra, C., Jennings, N., Noriega, P., & Parsons, S. (1997). A framework for argumentation-based negotiation. In: Proceedings of the 4th international workshop on agent theories, architectures, and languages (ATAL) (pp. 177–192).
Simmons, R. (1990). An architecture for coordinating planning, sensing, and action. In: Proceedings of DARPA workshop on innovative approaches to planning, scheduling and control (pp. 292–297).
Smith, L. (2011). Frictional matching models. Annual Reviews in Economics, 3(1), 319–338.
Stahl, I. (1972). Bargaining theory. Stockholm: Economics Research Institute, Stockholm School of Economics.
Stigler, G. (1961). The economics of information. Journal of Political Economy, 69(3), 213–225.
Tan, T., & Werlang, S. (1988). A guide to knowledge and games. In: Proceedings of the 2nd conference on theoretical aspects of reasoning about knowledge, (pp. 163–177). Morgan Kaufmann Publishers Inc.
Tong, X., Zhang, W., & Huang, H. (2012). Agent negotiation on resources with nonlinear utility functions. Computer Science and Information Systems, 9, 1697–1720.
van den Berg, G. (1990). Nonstationarity in job search theory. Review of Economic Studies, 57, 255–277.
Wagner, T., Phelps, J., Guralnik, V., & VanRiper, R. (2004). An application view of Coordinators: Coordination managers for first responders. In: Proceedings of the nineteenth national conference on artificial intelligence (AAAI-04) (pp. 908–915).
Weitzman, M. (1979). Optimal search for the best alternative. Econometrica, 47(3), 641–54.
Wooldridge, M. (2000). Reasoning about rational agents. Cambridge, Mass: MIT Press.
Zheng, R., Chakraborty, N., Dai, T., Sycara, K., & Lewis, M. (2013). Automated bilateral multiple-issue negotiation with no information about opponent. In Proceedings of the 46th Hawaii international conference on system sciences (HICSS) (pp. 520–527).
Zlotkin, G., & Rosenschein, J. (1996). Mechanism design for automated negotiation, and its application to task oriented domains. Artificial Intelligence, 86(2), 195–244.