Negotiating multicollinearity with spike-and-slab priors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bar, H., Booth, J., Wells, M.: An empirical Bayes approach to variable selection and QTL analysis. Proceedings of the 25th International Workshop on Statistical Modelling, pp. 63–68. Glasgow, Scotland (2010)
Figueiredo, M.A.: Adaptive sparseness for supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1150–1159 (2003)
George, E.I., McCulloch, R.E.: Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 88, 881–889 (1993)
George, E.I., McCulloch, R.E.: Approaches for Bayesian variable selection. Stat. Sin. 7, 339–373 (1997)
George, E., Rockova, V., Lesaffre, E.: Faster spike-and-slab variable selection with dual coordinate ascent EM. In: Proceedings of the 28th Workshop on Statistical Modelling, vol. 1, pp. 165–170 (2013)
Griffin, J., Brown, P.: Alternative prior distributions for variable selection with very many more variables than observations. In: Technical report, University of Warwick, University of Kent (2005)
Griffin, J.E., Brown, P.J.: Bayesian hyper-LASSOS with non-convex penalization. Aust. N. Z. J. Stat. 53, 423–442 (2012)
Hayashi, T., Iwata, H.: EM algorithm for Bayesian estimation of genomic breeding values. BMC Genetics 11, 1–9 (2010)
Kiiveri, H.: A Bayesian approach to variable selection when the number of variables is very large. Institute of Mathematical Statistics Lecture Notes—Monograph Series 40, 127–143 (2003)
Rockova, V., George, E.: EMVS: the EM approach to Bayesian variable selection. J. Am. Stat. Assoc. 361 (2014, forthcoming)
Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss minimization. J. Mach. Learn. Res. 14, 567–599 (2013)
Zellner, A.: On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Goel, P.K., Zellner, A. (eds.) Bayesian inference and decision techniques, pp. 233–243. Elsevier, North-Holland, Amsterdam