Negative and positive stiffness in auxetic magneto-mechanical metamaterials

Krzysztof K. Dudek1, Ruben Gatt1, Mirosław R. Dudek2, Joseph N. Grima3,1
1Metamaterials Unit, Faculty of Science, University of Malta, Msida 2080, Malta
2Institute of Physics, University of Zielona Gora, ul. Szafrana 4a, 65-069 Zielona Gora, Poland
3Department of Chemistry, Faculty of Science, University of Malta, Msida 2080, Malta

Tóm tắt

This work discusses the concept of allowing the control of the stiffness of a particular class of re-entrant auxetic magneto-mechanical metamaterials through the introduction of magnets to the system. It is shown, through experimental testing backed up by a theoretical model, that the appropriate insertion of magnets in such a system will alter its stiffness, possibly even making it exhibit ‘negative stiffness’. This leads to a completely different behaviour of the structure in terms of stability. It is also reported that the investigated mechanical metamaterials may exhibit both negative stiffness and negative Poisson's ratio at the same time. Moreover, it is shown that the effect which magnets have on the stiffness of the system may be fine-tuned upon replacing magnets with electromagnets. Such systems have the potential to be used in a wide range of practical applications such as vibration damping devices where achieving a negative stiffness is of fundamental importance.

Từ khóa


Tài liệu tham khảo

10.1016/S0022-5096(01)00116-8

10.1119/1.1619140

10.1002/pssb.200777708

10.1103/PhysRevLett.113.175503

10.1016/j.jsv.2011.09.014

10.1061/(ASCE)ST.1943-541X.0000615

Nagarajaiah S, 2013, Adaptive negative stiffness: a new structural modification approach for seismic protection, Adv. Civil Infrast. Eng., 639, 54

10.1016/j.jsv.2011.07.039

10.1016/j.ijmecsci.2013.02.009

Bazant Z, 1991, Stability of structures

10.1080/09500830010015332

10.1016/j.eml.2017.09.008

10.1103/PhysRevLett.115.044301

10.1006/jsvi.1997.1182

10.1016/j.jsv.2008.01.046

10.1016/j.eml.2015.08.001

10.1002/adma.201603959

10.1126/science.235.4792.1038

10.1080/00268978700101761

10.1016/0375-9601(89)90971-7

10.1038/353124a0

10.1103/PhysRevB.65.094101

10.1243/09544100JAERO185

10.1016/j.commatsci.2012.02.012

10.1063/1.4998398

10.1002/pssr.201600440

10.1002/pssr.200802101

10.1038/nmat3331

10.1038/nmat3551

10.1098/rspa.1957.0190

10.1098/rspa.1973.0060

White MA, 1999, Properties of materials

10.1126/science.272.5258.90

10.1103/PhysRevLett.95.255501

10.1098/rspa.2007.1841

10.1098/rspa.2015.0188

10.1177/1081286517735695

10.1088/1361-665X/aaa61c

Grima JN, 2000, Auxetic behavior from rotating squares, J. Mater. Sci., 19, 1563, 10.1023/A:1006781224002

10.12921/cmst.2004.10.02.137-145

10.1098/rspa.1982.0088

10.1243/0309324001514152

10.1016/j.jmps.2011.09.012

10.1177/002199839302701203

10.1243/095440602321029382

10.1016/j.ijengsci.2014.02.022

10.1016/j.proeng.2015.06.252

10.1007/s00161-018-0626-x

10.1177/1081286515576948

10.1088/1361-665X/aabbf6

10.1177/0021955X9803400304

10.1063/1.4919235

10.1103/PhysRevLett.114.185502

10.1088/0964-1726/22/8/084014

10.1243/095440604322887099

10.1088/0964-1726/24/8/085027

10.1016/j.ijrefrig.2011.09.010

10.1088/0964-1726/22/8/084016

10.1016/j.ijsolstr.2014.12.003

Kadic M, 2015, Hall-effect sign inversion in a realizable 3D metamaterial, Phys. Rev. X, 5, 021030

10.1002/pssr.201700122

10.1002/stc.371

10.1016/j.jsv.2006.12.024

10.1002/stc.368

10.1109/84.585787

10.1088/0964-1726/24/7/072002

10.1017/CBO9780511845000

10.1088/1361-665X/aa65bf