Needles: Toward Large-Scale Genomic Prediction with Marker-by-Environment Interaction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aguilar, 2010, Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of holstein final score., J. Dairy Sci., 93, 743, 10.3168/jds.2009-2730
Bernardo, 2010, Breeding for Quantitative Traits in Plants
Bernardo, 2007, Prospects for genomewide selection for quantitative traits in maize., Crop Sci., 47, 1082, 10.2135/cropsci2006.11.0690
Boer, 2007, A mixed-model quantitative trait loci (QTL) analysis for multiple-environment trial data using environmental covariables for QTL-by-environment interactions, with an example in maize., Genetics, 177, 1801, 10.1534/genetics.107.071068
Burgueño, 2012, Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers., Crop Sci., 52, 707, 10.2135/cropsci2011.06.0299
Chen, 2009, Fast and flexible simulation of DNA sequence data., Genome Res., 19, 136, 10.1101/gr.083634.108
Choi, 1996, 107
Christensen, 2010, Genomic prediction when some animals are not genotyped., Genet. Sel. Evol., 42, 1, 10.1186/1297-9686-42-2
Cooper, 2005, Gene-to-phenotype models and complex trait genetics., Crop Pasture Sci., 56, 895, 10.1071/AR05154
Cooper, 2002, The GP problem: quantifying gene-to-phenotype relationships., In Silico Biol., 2, 151
Crossa, 2010, Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers., Genetics, 186, 713, 10.1534/genetics.110.118521
Crossa, 2014, Genomic prediction in CIMMYT maize and wheat breeding programs., Heredity, 112, 48, 10.1038/hdy.2013.16
De Coninck, 2014, DAIRRy-BLUP: a high-performance computing approach to genomic prediction., Genetics, 197, 813, 10.1534/genetics.114.163683
de los Campos, 2013, Whole-genome regression and prediction methods applied to plant and animal breeding., Genetics, 193, 327, 10.1534/genetics.112.143313
Denis, 1997, Modelling expectation and variance for genotype by environment data., Heredity, 79, 162, 10.1038/hdy.1997.139
Friedman, 2001, The Elements of Statistical Learning
Ganal, 2012, Large SNP arrays for genotyping in crop plants., J. Biosci., 37, 821, 10.1007/s12038-012-9225-3
Gilmour, 1995, Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models., Biometrics, 51, 1440, 10.2307/2533274
Habier, 2007, The impact of genetic relationship information on genome-assisted breeding values., Genetics, 177, 2389, 10.1534/genetics.107.081190
Hartigan, 1979, Algorithm AS 136: a k-means clustering algorithm., J. R. Stat. Soc. Ser. C Appl. Stat., 28, 100
Hayes, 2009, Invited review. Genomic selection in dairy cattle: progress and challenges., J. Dairy Sci., 92, 433, 10.3168/jds.2008-1646
Henderson, 1963, Selection index and expected genetic advance, Statistical Genetics and Plant Breeding, 141
Henderson, 1973, Sire evaluation and genetic trends., J. Anim. Sci., 1973, 10, 10.1093/ansci/1973.Symposium.10
Heslot, 2012, Genomic selection in plant breeding: a comparison of models., Crop Sci., 52, 146, 10.2135/cropsci2011.06.0297
Heslot, 2014, Integrating environmental covariates and crop modeling into the genomic selection framework to predict genotype by environment interactions., Theor. Appl. Genet., 127, 463, 10.1007/s00122-013-2231-5
Hickey, 2014, AlphaMPSim: flexible simulation of multi-parent crosses., Bioinformatics, 30, 2686, 10.1093/bioinformatics/btu206
Jarquín, 2014, A reaction norm model for genomic selection using high-dimensional genomic and environmental data., Theor. Appl. Genet., 127, 595, 10.1007/s00122-013-2243-1
König, 2005, Genetic relationships for dairy performance between large-scale and small-scale farm conditions., J. Dairy Sci., 88, 4087, 10.3168/jds.S0022-0302(05)73093-9
Kuzmin, 2013, 533
Lande, 1990, Efficiency of marker-assisted selection in the improvement of quantitative traits., Genetics, 124, 743, 10.1093/genetics/124.3.743
Lopez-Cruz, 2015, Increased prediction accuracy in wheat breeding trials using a marker × environment interaction genomic selection model., G3, 5, 569, 10.1534/g3.114.016097
Meuwissen, 2001, Prediction of total genetic value using genome-wide dense marker maps., Genetics, 157, 1819, 10.1093/genetics/157.4.1819
Moreau, 2004, Use of trial clustering to study QTL × environment effects for grain yield and related traits in maize., Theor. Appl. Genet., 110, 92, 10.1007/s00122-004-1781-y
Mulder, 2005, Effects of genotype × environment interaction on genetic gain in breeding programs., J. Anim. Sci., 83, 49, 10.2527/2005.83149x
Patterson, 1971, Recovery of inter-block information when block sizes are unequal., Biometrika, 58, 545, 10.1093/biomet/58.3.545
Piepho, 1998, Empirical best linear unbiased prediction in cultivar trials using factor-analytic variance-covariance structures., Theor. Appl. Genet., 97, 195, 10.1007/s001220050885
Piepho, 2005, Statistical tests for QTL and QTL-by-environment effects in segregating populations derived from line crosses., Theor. Appl. Genet., 110, 561, 10.1007/s00122-004-1872-9
Podlich, 2004, Mapping as you go: an effective approach for marker-assisted selection of complex traits., Crop Sci., 44, 1560, 10.2135/cropsci2004.1560
Schenk, 2007, Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization., Comput. Optim. Appl., 36, 321, 10.1007/s10589-006-9003-y
Schenk, 2008, On large-scale diagonalization techniques for the anderson model of localization., SIAM Rev., 50, 91, 10.1137/070707002
Schön, 2004, Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits., Genetics, 167, 485, 10.1534/genetics.167.1.485
Schulz-Streeck, 2011, Pre-selection of markers for genomic selection., BMC Proc., 5, S12, 10.1186/1753-6561-5-S3-S12
Schulz-Streeck, 2013, Genomic selection allowing for marker-by-environment interaction., Plant Breed., 132, 532, 10.1111/pbr.12105
Schulz-Streeck, 2013, Comparisons of single-stage and two-stage approaches to genomic selection., Theor. Appl. Genet., 126, 69, 10.1007/s00122-012-1960-1
Shindo, 2003, Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines., Heredity, 90, 56, 10.1038/sj.hdy.6800178
Snir, 1998, MPI: The Complete Reference, Ed. 2
Takahashi, 1973, 63
van Eeuwijk, 2005, Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models., Crop Pasture Sci., 56, 883, 10.1071/AR05153