Necessary and sufficient conditions for the bounds of the commutator of a Littlewood-Paley operator with fractional differentiation

Analysis and Mathematical Physics - Tập 9 - Trang 2109-2132 - 2019
Xiongtao Wu1, Yanping Chen2, Liwei Wang3, Wenyu Tao4
1Department of Mathematics, School of Mathematics and Statistics, Hengyang Normal University, Hengyang, China
2Department of Applied Mathematics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
3School of Mathematics and Physics, Anhui Polytechnic University, Wuhu, China
4School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China

Tóm tắt

For $$b\in L_{\mathrm{loc}}({\mathbb {R}}^n)$$ and $$0<\alpha <1$$, we use fractional differentiation to define a new type of commutator of the Littlewood-Paley g-function operator, namely $$\begin{aligned} g_{\Omega ,\alpha ;b}(f )(x) =\bigg (\int _0^\infty \bigg |\frac{1}{t} \int _{|x-y|\le t}\frac{\Omega (x-y)}{|x-y|^{n+\alpha -1}}(b(x)-b(y))f(y)\,dy\bigg |^2\frac{dt}{t}\bigg )^{1/2}. \end{aligned}$$Here, we obtain the necessary and sufficient conditions for the function b to guarantee that $$g_{\Omega ,\alpha ;b}$$ is a bounded operator on $$L^2({\mathbb {R}}^n)$$. More precisely, if $$\Omega \in L(\log ^+ L)^{1/2}{(S^{n-1})}$$ and $$b\in I_{\alpha }(BMO)$$, then $$g_{\Omega ,\alpha ;b}$$ is bounded on $$L^2({\mathbb {R}}^n)$$. Conversely, if $$g_{\Omega ,\alpha ;b}$$ is bounded on $$L^2({\mathbb {R}}^n)$$, then $$b \in Lip_\alpha ({\mathbb {R}}^n)$$ for $$0<\alpha < 1$$.

Tài liệu tham khảo

Alvarez, J., Bagby, R., Kurtz, D., Pérez, C.: Weighted estimates for commutators of linear operators. Studia Math. 104, 195–209 (1993) AL-Salman, A., AL-Qassem, H., Cheng, L., Pan, Y.: \(L^p\) bounds for the function of Marcinkiewicz. Math. Res. Lett. 9, 697–700 (2002) AL-Salman, A., AL-Qassem, H.: A note on Marcinkiewicz integral operators. J. Math. Anal. Appl. 282, 698–710 (2003) Benedek, A., Calderón, A.P., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. USA 48, 356–365 (1962) Calderón, A.P.: Commutators of singular integral operators. Proc. Natl. Acad. Sci. USA 53, 1092–1099 (1965) Calderón, A.P.: Commutators, singular integrals on Lipschitz curves and application. In: Proc. Inter. Con. Math. Helsinki, pp. 85–96, p. 1980. Acad. Sci, Fennica, Helsinki (1978) Calderón, A.P.: Cauchy integrals on Lipschitz curves and related operators. Proc. Natl. Acad. Sci. USA 74, 1324–1327 (1977) Chen, Y., Ding, Y.: Commutators of Littlewood-Paley operators. Sci. China Ser. A 52, 2493–2505 (2009) Chen, Y., Ding, Y.: Necessary and sufficient conditions for the bounds of the Calderón type commutator for the Littlewood-Paley operator. Nonlinear Anal. 130, 279–297 (2016) Chen, Y., Ding, Y.: Gradient estimates for commutators of square roots of elliptic operators with complex bounded measurable coefficients. J. Geom. Anal. 27, 466–491 (2017) Chen, Y., Ding, Y.: \(L^p\) boundedness of the commutators of Marcinkiewicz integrals with rough kernels. Forum Math. 27, 2087–2111 (2015) Chen, Y., Ding, Y., Hong, G.: Commutators with fractional differentiation and new characterizations of BMO-Sobolev spaces. Anal. PDE 9, 1497–1522 (2016) Chen, Y., Ding, Y., Hofmann, S.: The commutators of the Kato square root for second order elliptic operators on \({\mathbb{R}}^n\). Acta Math. Sin. (Engl. Ser.) 32, 1121–1144 (2016) Ding, Y., Fan, D., Pan, Y.: Weighted boundedness for a class of rough Marcinkiewicz integrals. Indiana Univ. Math. J. 48, 1037–1055 (1999) Ding, Y., Fan, D., Pan, Y.: \(L^{p}\) boundedness of Marcinkiewicz integrals with Hardy space function kernels. Acta Math. Sin. Ser. B (English) 16, 593–600 (2000) Ding, Y., Fan, D., Pan, Y.: On the \(L^p\) boundedness of Marcinkiewicz integrals. Mich. Math. J. 50, 17–26 (2002) Ding, Y., Lu, S., Yabuta, K.: On commutator of Marcinkiewicz integrals with rough kernel. J. Math. Anal. Appl. 275, 60–68 (2002) Duoandikoetxea, J., Rubio de Francia, J.L.: Maximal and singular integral operators via Fourier transform estimates. Invent. Math. 84, 541–561 (1986) Fan, D., Sato, S.: Weak type \((1,1)\) estimates for Marcinkiewicz integrals with rough kernels. Tohôku Math. J. 53, 265–284 (2001) Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, Inc., Upper Saddle River (2004) Hömander, L.: Translation invariant operators. Acta. Math. 104, 93–139 (1960) Hu, G., Yan, D.: On the commutator of the Marcinkiewicz integral. J. Math. Anal. Appl. 283, 351–361 (2003) Meyers, N.G.: Mean oscillation over cubes and H\(\ddot{\rm o}\)lder continuity. Proc. Am. Math. Soc. 15, 717–721 (1964) Murray, M.: Commutators with fractional differentiation and BMO Sobolev spaces. Indiana Univ. Math. J. 34, 205–215 (1985) Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128, 163–185 (1995) Sakamoto, M., Yabuta, K.: Boundedness of Marcinkiewicz functions. Studia Math. 135, 103–142 (1999) Sato, S.: Remarks on square functions in the Littlewood-Paley theory. Bull. Aust. Math. Soc. 58, 199–211 (1998) Sato, S., Yatubta, K.: Multilinearized Littlewood-Paley operators. Scientiae Mathematicae Japonicae 6, 245–251 (2002) Stein, E.M.: On the functions of Littlewood-Paley, Lusin and Marcinkiewicz. Trans. Am. Math. Soc. 88, 430–466 (1958) Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton (1970) Strichartz, R.S.: Bounded mean oscillations and Sobolev spaces. Indiana Univ. Math. J. 29, 539–558 (1980) Torchinsky, A., Wang, S.L.: A note on the Marcinkiewicz integral. Colloq. Math. 60(61), 235–243 (1990) Walsh, T.: On the function of Marcinkiewicz. Studia Math. 44, 203–217 (1972) Wu, H.: On Marcinkiewicz integral operators with rough kernels. Integral Equ. Oper. Theory 52, 285–298 (2005) Xue, Q., Peng, X., Yabuta, K.: On the theory of multilinear Littlewood-Paley g-function. J. Math. Soc. Jpn. 67, 535–559 (2015)