Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các điều kiện tối ưu cần thiết và đủ cho điều khiển thư giãn và nghiêm ngặt của các phương trình vi phân ngẫu nhiên hai chiều tiến-lùi với nhảy dưới thông tin đầy đủ và một phần
Tóm tắt
Bài báo này đưa ra các điều kiện tối ưu cần thiết và đủ dưới dạng nguyên lý cực đại ngẫu nhiên cho các bài toán điều khiển tối ưu thư giãn và nghiêm ngặt có nhảy. Các bài toán này được điều khiển bởi các phương trình vi phân ngẫu nhiên hai chiều tiến-lùi hai chiều (FBDSDEs) với các nhảy Poisson và có điều khiển thư giãn, tức là các quy trình giá trị đo, và trong một ứng dụng, tác giả cho phép áp dụng điều khiển nghiêm ngặt. Các phương trình FBDSDEs với nhảy là hoàn toàn liên kết, các phương trình tiến và lùi hoạt động trong các không gian Euclid khác nhau nói chung, phương trình lùi là Markov và các bài toán điều khiển được xem xét dưới thông tin đầy đủ hoặc một phần theo các σ-đại số cung cấp thông tin như vậy. Cách giải thích các phương trình này cũng như các chức năng hiệu suất được đưa ra dưới dạng trừu tượng để cho phép khả năng bao quát hầu hết các ứng dụng có sẵn trong tài liệu. Hơn nữa, các hệ số của các phương trình này được phép phụ thuộc vào các biến điều khiển.
Từ khóa
#điều kiện tối ưu #điều khiển thư giãn #điều khiển nghiêm ngặt #phương trình vi phân ngẫu nhiên #nhảy Poisson #thông tin đầy đủ #thông tin một phầnTài liệu tham khảo
Antonelli F, Backward-forward stochastic differential equations, Ann. Appl. Probab., 1993, 3: 777–793.
Xu W, Stochastic maximum principle for optimal control problem of forward and backward system, J. Austral. Math. Soc., Ser. B, 1995, 37: 172–185.
Wu Z, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems, Systems Sci. Math. Sci., 1998, 11(3): 249–259.
Peng S G and Wu Z, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 1999, 37: 825–843.
Bahlali S, Necessary and sufficient optimality conditions for relaxed and strict control problems, SIAM J. Control Optim., 2008, 47(4): 2078–2095.
Ahmed N U and Charalambous C D, Stochastic minimum principle for partially observed systems subject to continuous and jump diffusion processes and driven by relaxed controls, SIAM J. Control Optim., 2013, 51(4): 3235–3257.
Anderson D and Djehiche B, A maximum principle for relaxed stochastic control of linear SDEs with application to bond portfolio optimization, Math. Meth. Oper. Res., 2010, 72(2): 273–310.
Bahlali K, Gherbal B, and Mezerdi B, Existence of optimal controls for systems driven by FBSDEs, Syst. Control Lett., 2011, 60: 344–349.
Øksendal B and Sulem A, Maximum principles for optimal control of forward-backward stochastic differential equations with jumps, SIAM J. Control Optim., 2009, 48(5): 2945–2976.
Wu Z, Forward-backward stochastic differential equations with Brownian motion and Poisson Process, Acta Math. Appl. Sinica, 1999, 15: 433–443.
Yin J and Situ R, On solutions of forward-backward stochastic differential equations with Poisson jumps, Stoch. Anal. Appl., 2003, 21: 1419–1448.
Wu Z and Wang X, FBSDE with Poisson process and its application to linear quadratic stochastic optimal control problem with random jumps, Acta Automatica Sinica, 2003, 29: 821–826.
Wu Z, Forward-backward stochastic differential equation linear quadratic stochastic optimal control and nonzero sum differential games, Journal of Systems Science & Complexity, 2005, 18(2): 179–192.
Xiao H and Wang G, A necessary condition for optimal control of initial coupled forwardbackward stochastic differential equations with partial information, J. Appl. Math. Comput., 2011, 37: 347–359.
Meng Q and Sun Y, Optimal control problem of fully coupled forward-backward stochastic systems with Poisson jumps under partial information, Proc. 30th Chinese Control Conference, July 22–24, 2011, Yantai, China, 1317–1322.
Shi J T, Necessary conditions for optimal control of forward-backward stochastic systems with random jumps, International Journal of Stochastic Analysis, Vol. 2012, Article ID 258674, doi: https://doi.org/10.1155/2012/258674, 2012.
Pardoux E and Peng S G, Backward doubly stochastic differential equations and system of quasilinear SPDEs, Prob. Th. & Rel. Fields, 1994, 98(2): 209–227.
Peng S G and Shi Y, A type-symmetric forward-backward stochastic differential equations, C. R. Acad. Sci. Paris Sér. I, 2003, 336(1): 773–778.
Zhang L and Shi Y, Maximum principle for forward-backward doubly stochastic control systems and applications, ESAIM Control Optim. Calc. Var., 2011, 17(4): 1174–1197.
Al-Hussein A and Gherbal B, Existence and uniqueness of the solutions of forward-backward doubly stochastic differential equations with Poisson jumps, Random Oper. Stoch. Equ., 2020, 28(4): 253–268.
Al-Hussein A and Gherbal B, Sufficient conditions of optimality for forward-backward doubly SDEs with jumps, Statistical Methods and Applications in Insurance and Finance, 173–191, Springer Proc. Math. Stat., 158, Springer, [Cham], 2016.
Shi J T and Wu Z, Maximum principle for partially-observed optimal control of fully-coupled forward-backward stochastic systems, J. Optim. Theory Appl., 2010, 145: 543–578.
Cvitanic J and Ma J, Hedging options for a large investor and forward-backward SDEs, Ann. Appl. Probab., 1996, 6(2): 370–398.
Ma J and Yong J M, Forward-Backward Stochastic Differential Equations and Their Applications, Springer, Berlin, 1999.
Cvitanic J, Wan X H, and Zhang J F, Optimal contracts in continuous-time models, J. Appl. Math. Stoch. Anal., 2006, Art. ID 95203.
El Karoui N, Peng S G, and Quenez M C, Backward stochastic differential equations in finance, Mathematical Finance, 1997, 7(1): 1–71.
Ji S L and Zhou X Y, A maximum principle for stochastic optimal control with terminal state constraints, and its applications, Communications in Information and Systems, 2006, 6(4): 321–337.
El Karoui N, Peng S G, and Quenez M C, A dynamic maximum principle for the optimization of recursive utilities under constraints, Ann. Appl. Probab., 2001, 11(3): 664–693.
Øksendal B, Optimal control of stochastic partial differential equations, Stochastic Anal. Appl., 2005, 23: 165–179.
Zhu Q and Shi Y, Forward-backward doubly stochastic differential equations and related stochastic partial differential equations, Science China Mathematics, 2012, 55(12): 2517–2534.
Hu Y, Nualart D, and Song X, Malliavin calculus for backward stochastic differential equations and application to numerical solutions, Ann. Appl. Probab., 2011, 21(6): 2379–2423.
Hu Y, Nualart D, and Song X, An implicit numerical scheme for a class of backward doubly stochastic differential equations, Stoch. Proc. Appl., 2020, 130(6): 3295–3324.
Fleming WH and Nisio M, On stochastic relaxed control for partially observed diffusions, Nagoya Math. J., 1984, 93: 71–108.
Hamadéne S, Nonzero sum linear-quadratic stochastic differential games and backwad-forward equations, Stoch. Anal. Appl., 1999, 14(2): 117–130.s
Zhou X Y and Li D, Continuous time mean-variance portfolio selection: A stochastic LQ framework, Appl. Math. and Optim., 2000, 42: 19–33.
Hui E C M and Xiao H, Differential games of partial information forward-backward doubly SDE and applications, ESAIM Control Optim. Calc. Var., 2014, 20(1): 78–94.
Wu Z and Yu Z, Linear quadratic nonzero-sum stochastic differential games problem with random jumps, Appl. Math. Mech., 2005, 26: 1034–1039.
Parthasarathy K R, Probability Measures on Metric Spaces, Academic Press, New York, 1967.
Bourbaki N, Éléments de Mathematiques. I, Livre III: Topologie Générale. Chapitre 9: Utilisations des Nombres Réels en Topologie Générale, Hermann, Paris, 1958.
Watanabe S, Itô’s theory of excursion point processes and its developments, Stoch. Proc. Appl., 2010, 120(5): 653–677.
Sun X and Lu Y, The property for solutions of the multi-dimensional backward doubly stochastic differential equations with jumps, Chin. J. Appl. Probab. Stat., 2008, 24: 73–82.
Brzézniak Z and Serrano R, Optimal relaxed control of dissipative stochastic partial differential equations in Banach spaces, SIAM J. Control Optim., 2013, 51(3): 2664–2703.
Valadier M, Désintégration d’une mesure sur un produit, C. R. Acad. Sci. Paris Sér. A-B., 1973, 276: A33–A35.
Jacod J and Mémin J, Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité, Seminar on Probability, XV (University of Strasbourg, Strasbourg, 1979/1980) (French), Lecture Notes in Math., 1981, 850: 529–546, Springer, Berlin.
Castaing C and de Fitte P R, On the fiber product of Young measures with application to a control problem with measures, Adv. Math. Econ., 2004, 6: 1–38.
Øksendal B and Sulem A, Forward-backward stochastic differential games and stochastic control under model uncertainty, J. Optim. Theory Appl., 2014, 161(1): 22–55.
Yong J and Zhou X Y, Stochastic Controls, in: Hamiltonian Systems and HJB Equations, Springer, New York, 1999.
Fleming W H, Generalized solutions in optimal stochastic control, Differential games and control theory II, Proceedings of 2nd Conference, Univ. of Rhode Island, Kingston, RI, 1976, Lect. Notes in Pure and Appl. Math., 30, Marcel Dekker, New York, 1977, 147–165.
Valadier M, A course on Young measures, Rendiconti dellIstituto di Matematica dellUniversit’ a di Trieste 01/1994, https://www.openstarts.units.it/bitstream/10077/4630/1/ValdierRend-Mat26s.pdf.