Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nồng độ trầm tích lơ lửng trong vùng gần bờ và mô hình vận chuyển dọc bờ biển phía nam Karnataka, Ấn Độ
Tóm tắt
Sự biến đổi của nồng độ trầm tích lơ lửng (SSC) gần bờ là rất quan trọng để hiểu rõ về sự tuần hoàn và vận chuyển trầm tích trong và xung quanh khu vực ven biển. SSC được thu thập từ đường bờ cho đến độ sâu 20 m theo 13 điểm xuyên suốt được chọn giữa Malpe và Talapady dọc theo bờ biển phía nam Karnataka, Ấn Độ. Dữ liệu của Bộ theo dõi màu đại dương (OCM) và SSC lấy mẫu tại chỗ đã được so sánh để xác thực dữ liệu vệ tinh. Nồng độ SSC cao ở phía nam khu vực nghiên cứu là do hoạt động sóng mạnh, xói mòn bờ biển, dòng chảy trầm tích từ các con sông, hoạt động nạo vét của Cảng New Mangalore và xây dựng rạn san hô ngoài khơi tại Ullal. Các mẫu lấy tại chỗ cho thấy nồng độ SSC cao tại lớp nước đáy trong các cửa sông, điều này cho thấy sự ưu thế của vận chuyển trầm tích đáy so với trầm tích lơ lửng. Trong vùng nước gần bờ, nồng độ cao ở bề mặt, giữa và đáy nước được ghi nhận dọc theo các trạm bị ảnh hưởng bởi các hoạt động nhân tạo. Dữ liệu tại chỗ dường như tương quan tích cực (± 10 mg/l) với dữ liệu OCM. Các giá trị SSC được giải mã bằng thuật toán Tassan sửa đổi cung cấp các ước lượng chính xác trong vùng nước ven biển phía tây nam Ấn Độ. Mô hình vận chuyển trầm tích được rút ra từ các thông số thống kê của mẫu trầm tích đáy cho thấy hướng vận chuyển ra khơi, về phía nam và về phía bắc. Các cấu trúc tự nhiên và nhân tạo hoạt động như là một rào cản trong việc vận chuyển trầm tích ven biển. Hướng vận chuyển trầm tích trong các vùng nước ven biển có ích cho việc duy trì các kênh hàng hải và lập kế hoạch cho các cấu trúc ven biển trong khu vực ven bờ.
Từ khóa
#trầm tích lơ lửng #vùng gần bờ #Karnataka #vận chuyển trầm tích #dữ liệu vệ tinhTài liệu tham khảo
Aagaard, T., & Jensen, S. G. (2013). Sediment concentration and vertical mixing under breaking waves. Marine Geology, 336, 146–159. https://doi.org/10.1016/j.margeo.2012.11.015
Acker, J., Quillon, S., Gould, R., & Arnone, R. (2005). Measuring marine suspended sediment concentration from space: History and potential. International Conference on Remote Sensing for Marine and Coastal Environments, Halifax, Canada. 10p.
Amoudry, L. O., & Souza, A. J. (2011). Deterministic coastal morphological and sediment transport modeling: A review and discussion. Rev Geophys, 49. https://doi.org/10.1029/2010RG000341
Anilkumar, N., Sarma, Y. V. B., & Babu, K. N. (2006). Post-tsunami oceanographic conditions in southern Arabian Sea and Bay of Bengal. Current Science, 90(3), 10p.
Avinash, K., Jayappa, K. S., & Vethamony, P. (2011). Evolution of Swarna estuary and its impact on braided islands and estuarine banks, Southwest coast of India. Environment and Earth Science, 65(3), 835–848.
Avinash, K., Jena, B., Vinaya, M., Jayappa, K. S., Narayana, A. C., & Bhat, H. G. (2012). Regionally tuned algorithm to study the seasonal variation of suspended sediment concentration using IRS-P4 Ocean Colour Monitor data. Egypt J Remote Sens Space Sci, 15(1), 67–81. https://doi.org/10.1016/j.ejrs.2012.05.003
Bergillos, R. J., López-Ruiz, A., Ortega-Sánchez, M., Masselink, G., & Losada, M. A. (2016). Implications of delta retreat on wave propagation and longshore sediment transport-Guadalfeo case study (southern Spain). Marine Geology, 382, 1–16.
Chauhan, O. S., Rajawat, A. S., Pradhan, Y., Suneethi, J., & Nayak, S. R. (2005). Weekly observations on dispersal and sink pathways of the terrigenous flux of the Ganga– Brahmaputra in the Bay of Bengal during NE monsoon. Deep Sea Res, 2(52), 2018–2030.
Costa, P. J. M. (2016). Sediment Transport. In: Kennish M.J. (eds) Encyclopedia of Estuaries. Encyclopedia of Earth Sciences Series, Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8801-4.
CWC (2017). Integrated Hydrological Data Book. Hydrological Data Directorate, Central Water Commission, Government of India. http://cwc.gov.in/publications?title=integrated+hydr. Accessed 07 October 2019.
Deepika, B., & Jayappa, K. S. (2017). Seasonal beach morphological changes along the coast of Udupi district, west coast of India. Journal of Coastal Conservation, 21(4), 545–559. https://doi.org/10.1007/s11852-017-0529-1
Doerffer, R. (1992). Imaging spectroscopy for detection of chlorophyll and suspended matter. Toselli F and Bodechtel J (Eds) London: Kluwer Academic Publishers. pp.215–257.
Dyer, K. R. (1989). Sediment processes in estuaries: Future research requirements. Journal of Geophysical Research, 94, 14327–14339.
Erftemeijer, P. L., Riegl, B., Hoeksema, B. W., & Todd, P. A. (2012). Environmental impacts of dredging and other sediment disturbances on corals: a review. Mar Poll Bul, 64(9), 1737–1765. https://doi.org/10.1016/j.marpolbul.2012.05.008
Erico, J. D., Miller, R. L., & Brent, A. M. (2007). Suspended particulate matter in coastal waters from ocean color: application to the northern Gulf of Mexico. Journal of Geophysical Research, 34, 1–6.
Fu, W., Ma, J., Chen, P., & Chen, F. (2019). Remote Sensing Satellites for Digital Earth. Manual of Digital Earth, 55–123. https://doi.org/10.1007/978-981-32-9915-3-
Gao, S., & Collins, M. (1992). Net sediment transport patterns inferred from grain-size trends based upon definition of “transport vectors.” Sedimentary Geology, 81(1–2), 47–60. https://doi.org/10.1016/0037-0738(92)90055-v
Garaba, S., VoB, D., & Zielinski, O. (2014). Physical, bio-optical state and correlations in North-Western European shelf seas. Rem Sens, 6(6), 5042–5066. https://doi.org/10.3390/rs6065042
Giardino, A., Schrijvershof, R., Nederhoff, C. M., de Vroeg, H., Brière, C., Tonnon, P.-K., Caires, S., Walstra, D. J., Sosa, J., van Verseveld, W., Schellekens, J., & Sloff, C. J. (2018). A quantitative assessment of human interventions and climate change on the West African sediment budget. Ocean and Coastal Management, 156, 249–265. https://doi.org/10.1016/j.ocecoaman.2017.11.008
Gordon, H. R. (1997). Atmospheric correction of ocean color imagery in the earth observing system era. Journal of Geophysical Research, 102, 17081–17106.
Holt, J. T., & James, I. D. (1999). A simulation of the southern North Sea in comparison with measurements from the North Sea project part 2 suspended particulate matter. Continental Shelf Research, 19, 1617–1642.
Jayappa, K. S., Vijaya Kumar, G. T., & Subrahmanya, K. R. (2003) Influence of coastal structures on the beaches of southern Karnataka, India. J Coast Res, 19(2), 389–408. https://www.jstor.org/stable/4299180.
Kairyte, M., & Stevens, R. L. (2015). Composite methodology for interpreting sediment transport pathways from spatial trends in grain size: a case study of the Lithuanian coast. Sedimentology, 62, 681–696. https://doi.org/10.1111/sed.12156
Kim, S., Yang, D. S. & Kim, Y. S. (2020). Distribution of metal contamination and grain size in the sediments of Nakdong River, Korea. Environ Monit Assess. https://doi.org/10.1007/s10661-020-08475-z.
Kunte, P. D. (2008). Sediment concentration and bed form structures of Gulf of Cambay from remote sensing. International Journal of Remote Sensing, 29(8), 2169–2182.
Leys, V., & Mulligan P., R. (2011). Modelling Coastal Sediment Transport for Harbour Planning: Selected Case Studies. Sediment Transport. https://doi.org/10.5772/1500
Liu, J. H., Yang, S. L., Zhu, Q., & Zhang, J. (2014). Controls on suspended sediment concentration profiles in the shallow and turbid Yangtze Estuary. Continental Shelf Research, 90, 96–108. https://doi.org/10.1016/j.csr.2014.01.021i
Liu, W. C., Hsu, M. H., & Kuo, A. Y. (2002). Modelling of hydrodynamics and cohesive sediment transport in Tanshui river estuarine system, Taiwan. Marine Pollution Bulletin, 44(10), 1076–1088.
Lumborg, U. (2004). Modelling the deposition, erosion and flux of cohesive sediment through Øresund. J Marine Syst, 56(1–2), 179–193.
Mclaren, P. (1981). An interpretation of trends in grain size measures. Journal of Sedimentary Research, 51(2), 611–624. https://doi.org/10.1306/212f7cf2-2b24-11d7-8648000102c1865d
Miller, R. L., & McKee, B. A. (2004). Using MODIS Terra 250m imagery to map concentrations suspended matter in coastal waters. Remote Sensing of Environment, 93(1–2), 259–266.
Miranda, L. S., Wijesiri, B., Ayoko, G. A., Egodawatta, P., & Goonetilleke, A. (2021). Water-sediment interactions and mobility of heavy metals in aquatic environments. Water Research, 202. https://doi.org/10.1016/j.watres.2021.117386
Moreira, D., & Simionato, C. G. (2019). Modeling the suspended sediment transport in a very wide, shallow, and microtidal estuary, the Río de la Plata. Argentina J Adv Mod Earth Syst, 11(10), 3284–3304.
Morris, A. W., & Howarth, M. J. (1998). Bed stress induced sediment resuspension. Continental Shelf Research, 18(11), 1203–1213.
Murphy, S., & Voulgaris, G. (2006). Identifying the role of tides, rainfall and seasonality in marsh sedimentation using long-term suspended sediment concentration data. Marine Geology, 227, 31–50.
Murthy, M. V., Ravichandran, V., Vendhan, M., Kiran, A. S., Raju, S. K., Avula, A. K, Varthini, S., Abhishek, T. (2020). Shore Protection Measures along Indian Coast – Design to Implementation Based on Two Case Studies. Cur Sci, 118(11). https://doi.org/10.18520/cs/v118/i11/1768-1773.
Nayak, S. (2017). Coastal zone management in India—present status and future needs. Coastal zone management in India—present status and future needs. Geo-spatial Info Sci, 20:2, 174–183. https://doi.org/10.1080/10095020.2017.1333715.
New Mangalore Port Trust (2018). Administration Report: 2017–2018. Government of India, Ministry of Shipping. http://newmangaloreport.gov.in:8080/#!/adm_report. Accessed 15 December 2019.
NHO (2005). Bathymetric chart no. 217 from Kundapura to Kasaragod, India; National Hydrographic Office of India, Superintendence by Rear Admiral B. R. Rao.
Nowacki, D., & Ganju, N. (2018). Storm impacts on hydrodynamics and suspended-sediment fluxes in a microtidal back-barrier estuary. Marine Geology, 404, 1–14. https://doi.org/10.1016/j.margeo.2018.06.016
Onishi, Y., Serne, J., Arnold, E., Cowan, C., & Thompson, F. (1981). Critical review: radionuclide transport, sediment transport, water quality, mathematical modelling and radionuclide adsorption/desorption mechanism. Pacific Northwest Laboratory, Richland. pp.512.
Pradhan, Y., Thomaskutty, A. V., Rajawat, A. S., & Nayak, S. (2005). Improved regional algorithm to retrieve suspended particulate matter using IRS-P4 ocean colour monitor data. Journal of Optics a: Pure and Applied Optics, 7, 343–349.
Prasad, J. S., Rajawat, A. S., Pradhan, Y., Chauhan, O. S., & Nayak, S. R. (2002). Retrieval of sea surface velocities using sequential Ocean Colour Monitor (OCM) data. J Earth Sys Sci, 111(3), 189–195. https://doi.org/10.1007/bf02701965
Putro, A. H. S., & Lee, J. L. (2020). Analysis of longshore drift patterns on the littoral system of Nusa Dua beach in Bali Indonesia. J Mar Sci Eng, 8, 749. https://doi.org/10.3390/jmse8100749
Quantum GIS Development Team (2012) Quantum GIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.osgeo.org
Rajput, P., Ramakrishnan, R., & Rajawat, A. S. (2014). Retrieval of coastal ocean currents using MCC technique on satellite imagery for supplementing altimeter derived currents. The Int Arch Photogrammetry, Remote Sens Spatial Inf Sci, XL-8, 1483–1489. https://doi.org/10.5194/isprsarchives-xl-8-1483-2014.
Ramakrishnan, D., Rishikesh, B., & Das, M. (2013). A technique for estimation of suspended sediment concentration in very high turbid coastal waters: an investigation from Gulf of Cambay, India. Marine Geology, 346, 256–261. https://doi.org/10.1016/j.margeo.2013.10.001
Rangel-Buitrago N., Neal W. J. (2018) Coastal Erosion Management. In: Finkl C.W., Makowski C. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Sciences Series. Springer. https://doi.org/10.1007/978-3-319-48657-4.
Ratheesh, R., & Rajawat, A. S. (2012). Simulation of suspended sediment transport initialized with satellite derived suspended sediment concentrations. Journal of Earth System Science, 121(5), 1201–1213.
Rosati, J. D. (2005). Concepts in sediment budgets. Journal of Coastal Research, 21(2), 307–322. https://doi.org/10.2112/02-475A.1
Sathasivam, S., Rasheed, K., Kankara, R. S., Muthusamy, M., Samykannu, A., & Boopati, R. (2015). SSC analysis of south maharashtra coast: a case study from vengurla coastal region. Aquatic Procedia, 4, 19–24. https://doi.org/10.1016/j.aqpro.2015.02.004
Shen, F., Verhoef, W., Zhou, Y., Salama, M. S., & Liu, X. (2010). Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) Estuary using MERIS data. Estuaries and Coasts, 33(6), 1420–1429.
Shetty, A., & Jayappa, K. S. (2020). Seasonal variation in longshore sediment transport rate and its impact on sediment budget along the wave-dominated Karnataka coast, India. Journal of Earth System Science, 129, 1–14. https://doi.org/10.1007/s12040-020-01504-y
Shetty, A., Jayappa, K. S., Ramakrishnan, R., & Rajawat, A. S. (2019). Shoreline dynamics and vulnerability assessment along the Karnataka coast, India: a geo-statistical approach. J Indian Soc Remote Sens, 47, 1223–1234. https://doi.org/10.1007/s12524-019-00980-0
Shrestha P. L., & Blumberg A. F. (2005). Cohesive Sediment Transport. In: Schwartz M.L. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series, Springer. https://doi.org/10.1007/1-4020-3880-1
SoI (2015) Tidal Predication. Survey of India, Dept of Science & Tech. http://www.surveyofindia.gov.in.
Soulsby, R. (1997). Dynamics of marine sands. A manual for practical applications. Thomas Telford services limited. pp.249.
Sravanthi, N., Ramakrishnan, R., Rajawat, A. S., & Narayana, A. C. (2015). Application of numerical model in suspended sediment transport studies along the Central Kerala, West-coast of India. Aquatic Procedia, 4, 109–116. https://doi.org/10.1016/j.aqpro.2015.02.016
Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of sea-water analysis. J Fish Res Bd Canada, 2, 311.
Subrahmanya, K. R. (1998). Tectono-magnetic evolution of west coast of India. Gondwana Research, 314, 319–327.
Tassan, S. (1994). Local algorithm using SeaWiFS data for retrieval of phytoplankton pigment, suspended sediments and yellow substance in coastal waters. Applied Optics, 33(12), 2369–2378.
Walton, T. L., & Dean, R. G. (2010). Longshore sediment transport via littoral drift rose. Ocean Engineering, 37, 228–235.
Whitehouse, R., Soulsby, R., William, R., & Mitchener, H. (2000). Dynamics of estuarine muds: a manual for practical applications. Thomas Telford.
Zheng, G., & Tang, D. L. (2007). Offshore and nearshore chlorophyll increases induced by typhoon and typhoon rain. Marine Ecology Progress Series, 333, 61–74.
Zonta, R., Collavini, F., Zaggia, L., & Zuliani, A. (2005). The effect of floods on the transport of suspended sediments and contaminants: a case study from the estuary of the Dese River (Venice Lagoon, Italy). Environment International, 31(7), 948–958.
