Near singular-phase optical biosensing with strongly coupled modes of a plasmonic–photonic trimer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Giuliano, 2017, Emerging applications of label-free optical biosensors, Nanophotonics, 6, 627, 10.1515/nanoph-2016-0158
Wijaya, 2011, Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies, Curr. Opin. Solid State Mater. Sci., 15, 208, 10.1016/j.cossms.2011.05.001
Lan, 2018, Surface plasmon resonance sensor with high sensitivity and wide dynamic range, IEEE Sens. J., 18, 5329, 10.1109/JSEN.2018.2838125
Masson, 2017, Surface plasmon resonance clinical biosensors for medical diagnostics, ACS Sensors, 2, 16, 10.1021/acssensors.6b00763
Enoch, 2012
Tabasi, 2018, Recent advancements in the methodologies applied for the sensitivity enhancement of surface plasmon resonance sensors, Anal. Methods, 10, 3906, 10.1039/C8AY00948A
2020, Strong coupling between Tamm and surface plasmons for advanced optical bio-sensing, Coatings, 10, 1187, 10.3390/coatings10121187
Buzavaite-Verteliene, 2020, Hybrid Tamm-surface plasmon polariton mode for highly sensitive detection of protein interactions, Opt. Express, 28, 29033, 10.1364/OE.401802
Guerreiro, 2014, Multifunctional biosensor based on localized surface plasmon resonance for monitoring small molecule–protein interaction, ACS Nano, 8, 7958, 10.1021/nn501962y
Cao, 2013, Metamaterials-based label-free nanosensor for conformation and affinity biosensing, ACS Nano, 7, 7583, 10.1021/nn401645t
Konopsky, 2007, Photonic crystal surface waves for optical biosensors, Anal. Chem., 79, 4729, 10.1021/ac070275y
Jose, 2012, Bio-organism detection in one-dimensional photonic crystals using electromagnetically induced transparency, Opt. Lett., 37, 410, 10.1364/OL.37.000410
Liu, 2015, Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers, J. Mater. Chem. C, 3, 4222, 10.1039/C4TC02928C
Xiao, 2017, Graphene-on-silicon hybrid plasmonic-photonic integrated circuits, Nanotechnology, 28, 10.1088/1361-6528/aa7128
Huang, 2012, Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications, Ann. Phys., Lpz., 524, 637, 10.1002/andp.201200203
Kabashin, 2009, Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing, Opt. Express, 17, 21191, 10.1364/OE.17.021191
Grigorenko, 1999, Phase jumps and interferometric surface plasmon resonance imaging, Appl. Phys. Lett., 75, 3917, 10.1063/1.125493
Kravets, 2013, Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection, Nat. Mater., 12, 304, 10.1038/nmat3537
Sreekanth, 2018, Biosensing with the singular phase of an ultrathin metal-dielectric nanophotonic cavity, Nat. Commun., 9, 1, 10.1038/s41467-018-02860-6
Yoichiro, 2018, Topological engineering of interfacial optical Tamm states for highly sensitive near-singular-phase optical detection, ACS Photon., 5, 929, 10.1021/acsphotonics.7b01176
Liu, 2016, Cell refractive index for cell biology and disease diagnosis: past, present and future, Lab on a Chip, 16, 634, 10.1039/C5LC01445J
Kaliteevski, 2007, Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror, Phys. Rev. B, 76, 10.1103/PhysRevB.76.165415
Sasin, 2008, Tamm plasmon polaritons: slow and spatially compact light, Appl. Phys. Lett., 92, 10.1063/1.2952486
Leosson, 2012, Comparing resonant photon tunneling via cavity modes and Tamm plasmon polariton modes in metal-coated Bragg mirrors, Opt. Lett., 37, 4026, 10.1364/OL.37.004026
Born, 1999
Ordal, 1983, Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti and W in the infrared and far infrared, Appl. Opt., 22, 1099, 10.1364/AO.22.001099
Maji, 2017, Hybrid-Tamm-plasmon-polariton based self-reference temperature sensor, J. Lightwave Technol., 35, 2833, 10.1109/JLT.2017.2705910
Singh, 2014, Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces, Appl. Phys. Lett., 105, 10.1063/1.4893726
Caselli, 2018, Generalized Fano lineshapes reveal exceptional points in photonic molecules, Nat. Commun., 9, 1, 10.1038/s41467-018-02855-3
Chen, 2013, Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity, Nanoscale, 5, 9129, 10.1039/c3nr02862c
Jiang, 2016, Coupling properties between plasmonic modes and cavity modes in corrugated metal–dielectric–metal waveguide, RSC Adv., 6, 104112, 10.1039/C6RA21926H
Jin, 2018, Acoustic analogue of electromagnetically induced transparency and Autler–Townes splitting in pillared metasurfaces, J. Phys. D: Appl. Phys., 51, 10.1088/1361-6463/aae4f3
Wei, 2017, Crossover from plasmonic analogue of Fano resonance to Autler–Townes splitting in a double guide mode resonances system, Appl. Phys. B, 123, 239, 10.1007/s00340-017-6813-9
Liu, 2017, Fano resonance Rabi splitting of surface plasmons, Sci. Rep., 7, 1, 10.1038/s41598-017-08221-5
Novotny, 2010, Strong coupling, energy splitting and level crossings: a classical perspective, Am. J. Phys., 78, 1199, 10.1119/1.3471177
Törmä, 2014, Strong coupling between surface plasmon polaritons and emitters: a review, Rep. Prog. Phys., 78, 10.1088/0034-4885/78/1/013901
Lundt, 2016, Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer, Nat. Commun., 7, 1, 10.1038/ncomms13328
Nair, 2019, The interaction between optical Tamm state and microcavity mode in a planar hybrid plasmonic-photonic structure, Photon. Nanostruct. Fundam. Appl., 36, 10.1016/j.photonics.2019.100702
Das, 2020, Resonant and non-resonant coupling of one-dimensional microcavity mode and optical Tamm state, J. Opt., 22, 10.1088/2040-8986/ab8a78
Kaliteevski, 2009, Hybrid states of Tamm plasmons and exciton polaritons, Appl. Phys. Lett., 95, 10.1063/1.3266841
Fang, 2013, Tunable coupled states of a pair of Tamm plasmon polaritons and a microcavity mode, J. Opt., 15, 10.1088/2040-8978/15/12/125703
Pozar, 2009
Zhang, 2014, Dual-mode electromagnetically induced transparency and slow light in a terahertz metamaterial, Opt. Lett., 39, 3539, 10.1364/OL.39.003539
Liu, 2016, Cell refractive index for cell biology and disease diagnosis: past, present and future, Lab Chip, 16, 634, 10.1039/C5LC01445J
Fujiwara, 2007