Near-room-temperature rhombohedral Ge1-Pb Te thermoelectrics
Tài liệu tham khảo
Pei, 2012, Adv Mater, 24, 6125, 10.1002/adma.201202919
Xie, 2013, Adv. Funct. Mater., 23, 5123, 10.1002/adfm.201300663
Liu, 2012, Phys. Rev. Lett., 108, 166601, 10.1103/PhysRevLett.108.166601
Zhang, 2012, J. Am. Chem. Soc., 134, 10031, 10.1021/ja301245b
Pei, 2012, NPG Asia Mater., 4, e28, 10.1038/am.2012.52
Yamini, 2015, Advanced Energy Materials, 5, 1501047, 10.1002/aenm.201501047
Li, 2015, J. Materiomics, 1, 307, 10.1016/j.jmat.2015.09.001
Zhou, 2014, Phys. Chem. Chem. Phys., 16, 20741, 10.1039/C4CP02091J
Liu, 2013, Advanced Energy Materials, 3, 1238, 10.1002/aenm.201300174
Tamaki, 2016, Adv Mater, 28, 10182, 10.1002/adma.201603955
Zhang, 2017, Nat. Commun., 8, 13901, 10.1038/ncomms13901
Fu, 2015, Nat. Commun., 6, 8144, 10.1038/ncomms9144
Fu, 2014, Advanced Energy Materials, 4, 1400600, 10.1002/aenm.201400600
Fu, 2015, Energy Environ. Sci., 8, 216, 10.1039/C4EE03042G
Lin, 2016, Nat. Commun., 7, 10287, 10.1038/ncomms10287
Pei, 2012, Energy Environ. Sci., 5, 7963, 10.1039/c2ee21536e
Wang, 2012, Proc. Natl. Acad. Sci. Unit. States Am., 109, 9705, 10.1073/pnas.1111419109
Wu, 2019, Joule, 3, 1276, 10.1016/j.joule.2019.02.008
Li, 1993, Appl. Phys. Lett., 63, 1393, 10.1063/1.109687
Hu, 2014, Adv. Funct. Mater., 24, 5211, 10.1002/adfm.201400474
Chen, 2017, Adv Mater, 29, 1606768, 10.1002/adma.201606768
Kim, 2015, Science, 348, 109, 10.1126/science.aaa4166
Hsu, 2004, Science, 303, 818, 10.1126/science.1092963
Biswas, 2012, Nature, 489, 414, 10.1038/nature11439
Pei, 2011, Adv. Funct. Mater., 21, 241, 10.1002/adfm.201000878
Poudel, 2008, Science, 320, 634, 10.1126/science.1156446
Snyder, 2008, Nat. Mater., 7, 105, 10.1038/nmat2090
Li, 2018, Advanced Energy Materials, 8, 1800030, 10.1002/aenm.201800030
Zhang, 2017, ACS Energy Letters, 2, 2470, 10.1021/acsenergylett.7b00813
Liu, 2012, Nat. Mater., 11, 422, 10.1038/nmat3273
Li, 2016, Advanced Science, 3, 1600196, 10.1002/advs.201600196
Li, 2016, Adv. Sci., 3, 1600196, 10.1002/advs.201600196
Wu, 2017, Materials Today Physics, 3, 127, 10.1016/j.mtphys.2017.10.001
Morelli, 2008, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.035901
Lin, 2017, Joule, 1, 816, 10.1016/j.joule.2017.09.006
Ioffe, 1957
Wang, 2011, J. Phys. D Appl. Phys., 44, 475304, 10.1088/0022-3727/44/47/475304
Wu, 2017, Acta Mater., 141, 217, 10.1016/j.actamat.2017.09.029
Li, 2017, Adv. Sci., 4, 1700341, 10.1002/advs.201700341
Nashchekina, 2013, J. Electron. Mater., 42, 1771, 10.1007/s11664-012-2423-9
Zhang, 2018, J. Am. Chem. Soc., 140, 15883, 10.1021/jacs.8b09375
Bu, 2019, Materials Today Physics, 9, 100096, 10.1016/j.mtphys.2019.100096
Chasmar, 1959, Journal of Electronics and Control, 7, 52, 10.1080/00207215908937186
Mahan, 1998
Pei, 2011, Nature, 473, 66, 10.1038/nature09996
Li, 2015, Journal of Materiomics, 1, 307, 10.1016/j.jmat.2015.09.001
Li, 2017, NPG Asia Mater., 9, e353, 10.1038/am.2017.8
liu, 2018, Proc. Natl. Acad. Sci. Unit. States Am., 115, 5332, 10.1073/pnas.1802020115
Shuai, 2019, Materials Today Physics, 9, 100094, 10.1016/j.mtphys.2019.100094
Li, 2018, Joule, 2, 976, 10.1016/j.joule.2018.02.016
Li, 2018, J. Am. Chem. Soc., 140, 16190, 10.1021/jacs.8b09147
Dong, 2019, Energy Environ. Sci., 12, 1396, 10.1039/C9EE00317G
Hong, 2018, Advanced Energy Materials, 8, 1801837, 10.1002/aenm.201801837
Chattopadhyay, 1987, J. Phys. C Solid State Phys., 20, 1431, 10.1088/0022-3719/20/10/012
Li, 2018, Joule, 2, 976, 10.1016/j.joule.2018.02.016
Zhang, 2020, Joule, 4, 986, 10.1016/j.joule.2020.03.004
Parker, 1974, J. Mater. Sci., 9, 1829, 10.1007/BF00541753
Hohnke, 1972, J. Phys. Chem. Solid., 33, 2053, 10.1016/S0022-3697(72)80235-X
Yashina, 2000, J. Alloys Compd., 313, 85, 10.1016/S0925-8388(00)01172-5
Doak, 2012, Phys. Rev. B, 86, 144202, 10.1103/PhysRevB.86.144202
Woolley, 1965, Journal of The Electrochemistry Society, 112, 82, 10.1149/1.2423473
Massimo, 1976, J. Electron. Mater., 5, 601, 10.1007/BF02654345
Gelbstein, 2014, Phys. Status Solidi B, 251, 1531, 10.1002/pssb.201451088
Chen, 2018, Adv Mater, 30
Gelbstein, 2014, Phys. Chem. Chem. Phys., 16, 20120, 10.1039/C4CP02399D
Gelbstein, 2013, Advanced Energy Materials, 3, 815, 10.1002/aenm.201200970
Gelbstein, 2009, J. Electron. Mater., 39, 2049, 10.1007/s11664-009-1012-z
Steigmeier, 1970, Solid State Commun., 8, 1275, 10.1016/0038-1098(70)90619-8
Murphy, 2017, Phys. Rev. B, 95, 10.1103/PhysRevB.95.144302
Murphy, 2016, Phys. Rev. B, 93
Li, 2019, ACS Appl. Mater. Interfaces
Li, 2017, Advanced Science, 4, 1700341, 10.1002/advs.201700341
Fahrnbauer, 2015, J. Am. Chem. Soc., 137, 12633, 10.1021/jacs.5b07856
Hazan, 2015, Advanced Electronic Materials, 1, 1500228, 10.1002/aelm.201500228
Li, 2016, Chem. Mater., 28, 6367, 10.1021/acs.chemmater.6b02772
Li, 2017, NPG Asia Mater., 9, e353, 10.1038/am.2017.8
Xing, 2018, J. Appl. Phys., 123, 195105, 10.1063/1.5025070
Callaway, 1960, Phys Rev, 120, 1149, 10.1103/PhysRev.120.1149
Abeles, 1963, Phys Rev, 131, 1906, 10.1103/PhysRev.131.1906
Chonan, 2006, J. Phys. Soc. Jpn., 75, 10.1143/JPSJ.75.064601
Chen, 2018, National Science Review, 5, 888, 10.1093/nsr/nwy097
DeAngelis, 2018, Nanoscale Microscale Thermophys. Eng., 23, 81, 10.1080/15567265.2018.1519004
Chung, 2000, Science, 287, 1024, 10.1126/science.287.5455.1024
Wolfing, 2001, Phys. Rev. Lett., 86, 4350, 10.1103/PhysRevLett.86.4350
Li, 2015, Adv. Funct. Mater., 25, 6478, 10.1002/adfm.201503022
Wang, 2020, J. Mater. Chem., 8, 1660, 10.1039/C9TA11901A
Peng, 2015, Energy Environ. Sci., 9, 454, 10.1039/C5EE03366G